tinyvvision 🧠✨
tinyvvision is a compact, synthetic curriculum-trained vision-language model designed to demonstrate real zero-shot capability in a minimal setup. Despite its small size (~630k parameters), it aligns images and captions effectively by learning shared visual-language embeddings.
What tinyvvision can do:
- Match simple geometric shapes (circles, stars, hearts, triangles, etc.) and descriptive captions (e.g., "a red circle", "a yellow star").
- Perform genuine zero-shot generalization, meaning it can correctly match captions to shapes and colors it has never explicitly encountered during training.
Model Details:
- Type: Contrastive embedding (CLIP-style, zero-shot)
- Parameters: ~630,000 (tiny!)
- Training data: Fully synthetic—randomly generated shapes, letters, numbers, and symbols paired with descriptive text captions.
- Architecture:
- Image Encoder: Simple CNN
- Text Encoder: Small embedding layer + bidirectional GRU
- Embedding Dim: 128-dimensional shared embedding space
Examples of Zero-Shot Matching:
- Seen during training: "a red circle" → correctly matches the drawn red circle.
- Never seen: "a teal lightning bolt" → correctly matched a hand-drawn lightning bolt shape, despite never having seen one during training.
Limitations:
- tinyvvision is designed as a demonstration of zero-shot embedding and generalization on synthetic data. It is not trained on real-world data or complex scenarios. While robust within its domain (simple geometric shapes and clear captions), results may vary significantly on more complicated or out-of-domain inputs.
How to Test tinyvvision:
Check out the provided inference script to easily test your own shapes and captions. Feel free to challenge tinyvvision with new, unseen combinations to explore its generalization capability!
from huggingface_hub import hf_hub_download
import torch, re, numpy as np, math
from PIL import Image, ImageDraw, ImageFont
repo = "ProCreations/tinyvvision"
pth = hf_hub_download(repo, "cortexclip-mini.pth")
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu")
state = torch.load(pth, map_location=device)
idx2tok = state["vocab"]
tok2idx = {t:i for i,t in enumerate(idx2tok)}
def encode_txt(s, maxlen=16):
toks = re.findall(r"\w+|[^\w\s]", s.lower())
ids = [tok2idx.get(t,0) for t in toks][:maxlen]
return ids + [0]*(maxlen-len(ids))
class TE(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.Embedding(len(idx2tok), 64)
self.gru = torch.nn.GRU(64, 128, num_layers=2, bidirectional=True, batch_first=True)
self.out_proj = torch.nn.Linear(256, 128)
def forward(self, x):
e, _ = self.gru(self.emb(x))
return self.out_proj(e[:, -1])
class IE(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(3,32,5,1,2), torch.nn.ReLU(),
torch.nn.Conv2d(32,64,3,1,1), torch.nn.ReLU(),
torch.nn.Conv2d(64,128,3,1,1), torch.nn.ReLU(),
torch.nn.AdaptiveAvgPool2d((4,4)), torch.nn.Flatten(),
torch.nn.Linear(128*4*4,128), torch.nn.ReLU()
)
def forward(self, x): return self.conv(x)
te, ie = TE().to(device), IE().to(device)
te.load_state_dict(state["text_encoder"])
ie.load_state_dict(state["image_encoder"])
te.eval(); ie.eval()
# ----- CUSTOMIZE YOUR EXAMPLES HERE -----
# To try your own image:
# 1. Replace the 'custom_image()' function with your image drawing/loading code.
# 2. Replace 'custom_caption' with your own caption for the image.
def custom_image():
# Example: Draw your own "blue hexagon" shape below!
img = Image.new("RGB",(64,64),"white")
dr = ImageDraw.Draw(img)
dr.regular_polygon((32,32,22), n_sides=6, fill="blue")
arr = np.array(img).astype(np.float32)/255.0
return torch.from_numpy(arr).permute(2,0,1).unsqueeze(0).to(device)
custom_caption = "a blue hexagon"
# ----- FUN DEMO EXAMPLES -----
def draw_red_heart():
img = Image.new("RGB",(64,64),"white")
dr = ImageDraw.Draw(img)
dr.polygon([(32,18),(50,34),(32,56),(14,34)], fill="red") # simple heart
dr.ellipse((18,12,32,32), fill="red")
dr.ellipse((32,12,46,32), fill="red")
arr = np.array(img).astype(np.float32)/255.0
return torch.from_numpy(arr).permute(2,0,1).unsqueeze(0).to(device)
def draw_purple_star():
img = Image.new("RGB",(64,64),"white")
dr = ImageDraw.Draw(img)
points = [ (32+20*math.cos(math.radians(a)),32+20*math.sin(math.radians(a))) for a in range(-90, 270, 72) ]
for i in range(5):
dr.line([points[i], points[(i+2)%5]], fill="purple", width=7)
arr = np.array(img).astype(np.float32)/255.0
return torch.from_numpy(arr).permute(2,0,1).unsqueeze(0).to(device)
def draw_orange_pentagon():
img = Image.new("RGB",(64,64),"white")
dr = ImageDraw.Draw(img)
dr.regular_polygon((32,32,22), n_sides=5, fill="orange")
arr = np.array(img).astype(np.float32)/255.0
return torch.from_numpy(arr).permute(2,0,1).unsqueeze(0).to(device)
demo_imgs = [
(custom_image(), custom_caption),
(draw_red_heart(), "a red heart"),
(draw_purple_star(), "a purple star"),
(draw_orange_pentagon(), "an orange pentagon"),
]
captions = [c for (_,c) in demo_imgs]
img_tensors = [im for (im,_) in demo_imgs]
cap_ids = torch.tensor([encode_txt(c) for c in captions], device=device)
with torch.no_grad():
txt_emb = te(cap_ids)
for i, (img, caption) in enumerate(zip(img_tensors, captions)):
im_emb = ie(img)
sim = torch.nn.functional.cosine_similarity(im_emb, txt_emb).cpu().numpy()
rank = int(np.argmax(sim))
print(f"Input image {i+1}: '{caption}'")
print(" Similarity scores:")
for j, c in enumerate(captions):
print(f" {c}: {sim[j]:.4f}")
print(" Best match:", captions[rank], "\n")
✨ Enjoy experimenting! ✨
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support