|
import os
|
|
import math
|
|
import time
|
|
import inspect
|
|
from dataclasses import dataclass
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
from hellaswag import render_example, iterate_examples
|
|
import pandas as pd
|
|
import pyarrow.parquet as pq
|
|
|
|
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert config.n_embd % config.n_head == 0
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
|
self.c_proj.NANOGPT_SCALE_INIT = 1
|
|
|
|
self.n_head = config.n_head
|
|
self.n_embd = config.n_embd
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
|
|
|
|
|
|
qkv = self.c_attn(x)
|
|
q, k, v = qkv.split(self.n_embd, dim=2)
|
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
|
|
y = self.c_proj(y)
|
|
return y
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
|
self.gelu = nn.GELU(approximate='tanh')
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
|
self.c_proj.NANOGPT_SCALE_INIT = 1
|
|
|
|
def forward(self, x):
|
|
x = self.c_fc(x)
|
|
x = self.gelu(x)
|
|
x = self.c_proj(x)
|
|
return x
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln_1 = nn.LayerNorm(config.n_embd)
|
|
self.attn = CausalSelfAttention(config)
|
|
self.ln_2 = nn.LayerNorm(config.n_embd)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
@dataclass
|
|
class GPTConfig:
|
|
block_size: int = 768
|
|
vocab_size: int = 50257
|
|
n_layer: int = 8
|
|
n_head: int = 8
|
|
n_embd: int = 768
|
|
dropout: float = 0.1
|
|
model_type: str = "custom_gpt"
|
|
|
|
class GPT(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.transformer = nn.ModuleDict(dict(
|
|
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
|
wpe = nn.Embedding(config.block_size, config.n_embd),
|
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
ln_f = nn.LayerNorm(config.n_embd),
|
|
))
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
std = 0.02
|
|
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
|
std *= (2 * self.config.n_layer) ** -0.5
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, idx, targets=None):
|
|
|
|
B, T = idx.size()
|
|
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
|
|
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
|
|
pos_emb = self.transformer.wpe(pos)
|
|
tok_emb = self.transformer.wte(idx)
|
|
x = tok_emb + pos_emb
|
|
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
|
|
x = self.transformer.ln_f(x)
|
|
logits = self.lm_head(x)
|
|
loss = None
|
|
if targets is not None:
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
|
return logits, loss
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, model_type):
|
|
"""Loads pretrained GPT-2 model weights from huggingface"""
|
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
|
from transformers import GPT2LMHeadModel
|
|
print("loading weights from pretrained gpt: %s" % model_type)
|
|
|
|
|
|
config_args = {
|
|
'gpt2': dict(n_layer=12, n_head=12, n_embd=768),
|
|
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024),
|
|
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280),
|
|
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600),
|
|
}[model_type]
|
|
config_args['vocab_size'] = 50257
|
|
config_args['block_size'] = 1024
|
|
|
|
config = GPTConfig(**config_args)
|
|
model = GPT(config)
|
|
sd = model.state_dict()
|
|
sd_keys = sd.keys()
|
|
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')]
|
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
|
sd_hf = model_hf.state_dict()
|
|
|
|
|
|
sd_keys_hf = sd_hf.keys()
|
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')]
|
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')]
|
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
|
|
|
|
|
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
|
for k in sd_keys_hf:
|
|
if any(k.endswith(w) for w in transposed):
|
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape
|
|
with torch.no_grad():
|
|
sd[k].copy_(sd_hf[k].t())
|
|
else:
|
|
|
|
assert sd_hf[k].shape == sd[k].shape
|
|
with torch.no_grad():
|
|
sd[k].copy_(sd_hf[k])
|
|
|
|
return model
|
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()}
|
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
|
optim_groups = [
|
|
{'params': decay_params, 'weight_decay': weight_decay},
|
|
{'params': nodecay_params, 'weight_decay': 0.0}
|
|
]
|
|
num_decay_params = sum(p.numel() for p in decay_params)
|
|
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
|
if master_process:
|
|
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
|
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
|
use_fused = fused_available and device_type == "cuda"
|
|
if master_process:
|
|
print(f"using fused AdamW: {use_fused}")
|
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
|
return optimizer
|
|
|
|
|
|
|
|
import tiktoken
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
import torch
|
|
from transformers import GPT2Tokenizer
|
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
|
|
def load_tokens(filename, max_length=1024):
|
|
|
|
df = pd.read_parquet(filename)
|
|
|
|
|
|
if 'text' in df.columns:
|
|
|
|
tokens = df['text'].apply(lambda x: tokenizer.encode(x, add_special_tokens=True, max_length=max_length, truncation=True))
|
|
|
|
tokens_flat = [token for sublist in tokens for token in sublist]
|
|
ptt = torch.tensor(tokens_flat, dtype=torch.long)
|
|
return ptt
|
|
else:
|
|
raise ValueError(f"'text' column not found in {filename}")
|
|
|
|
class DataLoaderLite:
|
|
def __init__(self, B, T, process_rank, num_processes, split):
|
|
self.B = B
|
|
self.T = T
|
|
self.process_rank = process_rank
|
|
self.num_processes = num_processes
|
|
assert split in {'train', 'val'}
|
|
|
|
|
|
data_root = "GPT2-TS/ts"
|
|
shards = os.listdir(data_root)
|
|
shards = [s for s in shards if split in s]
|
|
shards = sorted(shards)
|
|
shards = [os.path.join(data_root, s) for s in shards]
|
|
self.shards = shards
|
|
assert len(shards) > 0, f"no shards found for split {split}"
|
|
if master_process:
|
|
print(f"found {len(shards)} shards for split {split}")
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
|
|
self.current_shard = 0
|
|
self.tokens = load_tokens(self.shards[self.current_shard])
|
|
self.current_position = self.B * self.T * self.process_rank
|
|
|
|
def next_batch(self):
|
|
B, T = self.B, self.T
|
|
buf = self.tokens[self.current_position : self.current_position+B*T+1]
|
|
x = (buf[:-1]).view(B, T)
|
|
y = (buf[1:]).view(B, T)
|
|
|
|
self.current_position += B * T * self.num_processes
|
|
|
|
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
|
|
self.current_shard = (self.current_shard + 1) % len(self.shards)
|
|
self.tokens = load_tokens(self.shards[self.current_shard])
|
|
self.current_position = B * T * self.process_rank
|
|
return x, y
|
|
|
|
|
|
|
|
|
|
|
|
def get_most_likely_row(tokens, mask, logits):
|
|
|
|
shift_logits = (logits[..., :-1, :]).contiguous()
|
|
shift_tokens = (tokens[..., 1:]).contiguous()
|
|
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
|
flat_shift_tokens = shift_tokens.view(-1)
|
|
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
|
|
shift_losses = shift_losses.view(tokens.size(0), -1)
|
|
|
|
shift_mask = (mask[..., 1:]).contiguous()
|
|
masked_shift_losses = shift_losses * shift_mask
|
|
|
|
sum_loss = masked_shift_losses.sum(dim=1)
|
|
avg_loss = sum_loss / shift_mask.sum(dim=1)
|
|
|
|
|
|
pred_norm = avg_loss.argmin().item()
|
|
return pred_norm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.set_num_threads(20)
|
|
torch.set_num_interop_threads(20)
|
|
|
|
|
|
|
|
from torch.distributed import init_process_group, destroy_process_group
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
import torch.distributed as dist
|
|
|
|
|
|
|
|
ddp = int(os.environ.get('RANK', -1)) != -1
|
|
if ddp:
|
|
|
|
assert torch.cuda.is_available(), "for now i think we need CUDA for DDP"
|
|
init_process_group(backend='nccl')
|
|
ddp_rank = int(os.environ['RANK'])
|
|
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
|
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
|
device = f'cuda:{ddp_local_rank}'
|
|
torch.cuda.set_device(device)
|
|
master_process = ddp_rank == 0
|
|
else:
|
|
|
|
ddp_rank = 0
|
|
ddp_local_rank = 0
|
|
ddp_world_size = 1
|
|
master_process = True
|
|
|
|
device = "cpu"
|
|
if torch.cuda.is_available():
|
|
device = "cuda"
|
|
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
|
device = "mps"
|
|
print(f"using device: {device}")
|
|
|
|
|
|
device_type = "cuda"
|
|
|
|
torch.manual_seed(1337)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed(1337)
|
|
|
|
enc = tiktoken.get_encoding("gpt2")
|
|
|
|
total_batch_size = 65536
|
|
B = 32
|
|
T = 512
|
|
assert total_batch_size % (B * T * ddp_world_size) == 0, "make sure total_batch_size is divisible by B * T * ddp_world_size"
|
|
grad_accum_steps = total_batch_size // (B * T * ddp_world_size)
|
|
if master_process:
|
|
print(f"total desired batch size: {total_batch_size}")
|
|
print(f"=> calculated gradient accumulation steps: {grad_accum_steps}")
|
|
|
|
train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="train")
|
|
val_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="val")
|
|
|
|
torch.set_float32_matmul_precision('high')
|
|
|
|
|
|
model = GPT(GPTConfig(vocab_size=50304))
|
|
print(f"Number of layers in the model: {model.config.n_layer}")
|
|
|
|
print(f"Number of layers (blocks): {len(model.transformer.h)}")
|
|
|
|
|
|
model.to(device)
|
|
use_compile = False
|
|
if use_compile:
|
|
model = torch.compile(model)
|
|
if ddp:
|
|
model = DDP(model, device_ids=[ddp_local_rank])
|
|
raw_model = model.module if ddp else model
|
|
|
|
max_lr = 6e-4
|
|
min_lr = max_lr * 0.1
|
|
warmup_steps = 715
|
|
max_steps = 28228
|
|
def get_lr(it):
|
|
|
|
if it < warmup_steps:
|
|
return max_lr * (it+1) / warmup_steps
|
|
|
|
if it > max_steps:
|
|
return min_lr
|
|
|
|
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
|
|
assert 0 <= decay_ratio <= 1
|
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
|
return min_lr + coeff * (max_lr - min_lr)
|
|
|
|
|
|
optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device_type)
|
|
|
|
|
|
log_dir = "log"
|
|
os.makedirs(log_dir, exist_ok=True)
|
|
log_file = os.path.join(log_dir, f"log.txt")
|
|
with open(log_file, "w") as f:
|
|
pass
|
|
|
|
for step in range(max_steps):
|
|
t0 = time.time()
|
|
last_step = (step == max_steps - 1)
|
|
|
|
|
|
if step % 250 == 0 or last_step:
|
|
model.eval()
|
|
val_loader.reset()
|
|
with torch.no_grad():
|
|
val_loss_accum = 0.0
|
|
val_loss_steps = 20
|
|
for _ in range(val_loss_steps):
|
|
x, y = val_loader.next_batch()
|
|
x, y = x.to(device), y.to(device)
|
|
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
|
|
logits, loss = model(x, y)
|
|
loss = loss / val_loss_steps
|
|
val_loss_accum += loss.detach()
|
|
if ddp:
|
|
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
|
|
if master_process:
|
|
print(f"validation loss: {val_loss_accum.item():.4f}")
|
|
with open(log_file, "a") as f:
|
|
f.write(f"{step} val {val_loss_accum.item():.4f}\n")
|
|
if step > 0 and (step % 3000 == 0 or last_step):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_path = os.path.join(log_dir, f"model_full_{step:05d}.pt")
|
|
torch.save(raw_model, model_path)
|
|
|
|
|
|
if (step % 250 == 0 or last_step) and (not use_compile):
|
|
num_correct_norm = 0
|
|
num_total = 0
|
|
for i, example in enumerate(iterate_examples("val")):
|
|
|
|
if i % ddp_world_size != ddp_rank:
|
|
continue
|
|
|
|
_, tokens, mask, label = render_example(example)
|
|
tokens = tokens.to(device)
|
|
mask = mask.to(device)
|
|
|
|
with torch.no_grad():
|
|
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
|
|
logits, loss = model(tokens)
|
|
pred_norm = get_most_likely_row(tokens, mask, logits)
|
|
num_total += 1
|
|
num_correct_norm += int(pred_norm == label)
|
|
|
|
if ddp:
|
|
num_total = torch.tensor(num_total, dtype=torch.long, device=device)
|
|
num_correct_norm = torch.tensor(num_correct_norm, dtype=torch.long, device=device)
|
|
dist.all_reduce(num_total, op=dist.ReduceOp.SUM)
|
|
dist.all_reduce(num_correct_norm, op=dist.ReduceOp.SUM)
|
|
num_total = num_total.item()
|
|
num_correct_norm = num_correct_norm.item()
|
|
acc_norm = num_correct_norm / num_total
|
|
if master_process:
|
|
print(f"HellaSwag accuracy: {num_correct_norm}/{num_total}={acc_norm:.4f}")
|
|
with open(log_file, "a") as f:
|
|
f.write(f"{step} hella {acc_norm:.4f}\n")
|
|
|
|
|
|
if ((step > 0 and step % 250 == 0) or last_step) and (not use_compile):
|
|
model.eval()
|
|
num_return_sequences = 4
|
|
max_length = 32
|
|
tokens = enc.encode("Hello, I'm a language model,")
|
|
tokens = torch.tensor(tokens, dtype=torch.long)
|
|
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
|
|
xgen = tokens.to(device)
|
|
sample_rng = torch.Generator(device=device)
|
|
sample_rng.manual_seed(42 + ddp_rank)
|
|
while xgen.size(1) < max_length:
|
|
|
|
with torch.no_grad():
|
|
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
|
|
logits, loss = model(xgen)
|
|
|
|
logits = logits[:, -1, :]
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
|
|
|
|
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
|
|
|
|
|
ix = torch.multinomial(topk_probs, 1, generator=sample_rng)
|
|
|
|
xcol = torch.gather(topk_indices, -1, ix)
|
|
|
|
xgen = torch.cat((xgen, xcol), dim=1)
|
|
|
|
for i in range(num_return_sequences):
|
|
tokens = xgen[i, :max_length].tolist()
|
|
decoded = enc.decode(tokens)
|
|
print(f"rank {ddp_rank} sample {i}: {decoded}")
|
|
|
|
|
|
model.train()
|
|
optimizer.zero_grad()
|
|
loss_accum = 0.0
|
|
for micro_step in range(grad_accum_steps):
|
|
x, y = train_loader.next_batch()
|
|
x, y = x.to(device), y.to(device)
|
|
|
|
if ddp:
|
|
model.require_backward_grad_sync = (micro_step == grad_accum_steps - 1)
|
|
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
|
|
logits, loss = model(x, y)
|
|
|
|
|
|
|
|
|
|
loss = loss / grad_accum_steps
|
|
loss_accum += loss.detach()
|
|
loss.backward()
|
|
if ddp:
|
|
dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG)
|
|
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
|
|
|
lr = get_lr(step)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr
|
|
optimizer.step()
|
|
if device_type == "cuda":
|
|
torch.cuda.synchronize()
|
|
t1 = time.time()
|
|
dt = t1 - t0
|
|
tokens_processed = train_loader.B * train_loader.T * grad_accum_steps * ddp_world_size
|
|
tokens_per_sec = tokens_processed / dt
|
|
if master_process:
|
|
print(f"step {step:5d} | loss: {loss_accum.item():.6f} | lr {lr:.4e} | norm: {norm:.4f} | dt: {dt*1000:.2f}ms | tok/sec: {tokens_per_sec:.2f}")
|
|
with open(log_file, "a") as f:
|
|
f.write(f"{step} train {loss_accum.item():.6f}\n")
|
|
|
|
if ddp:
|
|
destroy_process_group() |