segformer-b0-finetuned-batch3-26May
This model is a fine-tuned version of PushkarA07/segformer-b0-finetuned-batch2w5-15Dec on the PushkarA07/batch3-tiles_second dataset. It achieves the following results on the evaluation set:
- Loss: 0.0014
- Mean Iou: 0.8838
- Mean Accuracy: 0.9271
- Overall Accuracy: 0.9994
- Accuracy Abnormality: 0.8545
- Iou Abnormality: 0.7682
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Abnormality | Iou Abnormality |
---|---|---|---|---|---|---|---|---|
0.0035 | 0.7143 | 10 | 0.0024 | 0.8344 | 0.8791 | 0.9992 | 0.7585 | 0.6697 |
0.0021 | 1.4286 | 20 | 0.0022 | 0.8422 | 0.8942 | 0.9992 | 0.7888 | 0.6852 |
0.0033 | 2.1429 | 30 | 0.0020 | 0.8474 | 0.8942 | 0.9992 | 0.7887 | 0.6956 |
0.007 | 2.8571 | 40 | 0.0020 | 0.8510 | 0.8943 | 0.9992 | 0.7889 | 0.7028 |
0.0036 | 3.5714 | 50 | 0.0019 | 0.8553 | 0.8983 | 0.9993 | 0.7968 | 0.7113 |
0.0032 | 4.2857 | 60 | 0.0018 | 0.8583 | 0.8969 | 0.9993 | 0.7940 | 0.7173 |
0.0026 | 5.0 | 70 | 0.0018 | 0.8594 | 0.9003 | 0.9993 | 0.8009 | 0.7195 |
0.0033 | 5.7143 | 80 | 0.0018 | 0.8600 | 0.8999 | 0.9993 | 0.8000 | 0.7207 |
0.0048 | 6.4286 | 90 | 0.0018 | 0.8616 | 0.8997 | 0.9993 | 0.7997 | 0.7239 |
0.003 | 7.1429 | 100 | 0.0017 | 0.8653 | 0.9105 | 0.9993 | 0.8214 | 0.7313 |
0.0026 | 7.8571 | 110 | 0.0017 | 0.8664 | 0.9122 | 0.9993 | 0.8248 | 0.7335 |
0.0022 | 8.5714 | 120 | 0.0017 | 0.8599 | 0.8902 | 0.9993 | 0.7806 | 0.7206 |
0.0023 | 9.2857 | 130 | 0.0017 | 0.8668 | 0.9069 | 0.9993 | 0.8140 | 0.7342 |
0.0028 | 10.0 | 140 | 0.0017 | 0.8681 | 0.9177 | 0.9993 | 0.8357 | 0.7368 |
0.0017 | 10.7143 | 150 | 0.0017 | 0.8672 | 0.9107 | 0.9993 | 0.8217 | 0.7350 |
0.002 | 11.4286 | 160 | 0.0017 | 0.8665 | 0.9020 | 0.9993 | 0.8041 | 0.7336 |
0.0018 | 12.1429 | 170 | 0.0017 | 0.8676 | 0.9047 | 0.9993 | 0.8097 | 0.7358 |
0.0021 | 12.8571 | 180 | 0.0017 | 0.8695 | 0.9240 | 0.9993 | 0.8484 | 0.7397 |
0.001 | 13.5714 | 190 | 0.0016 | 0.8700 | 0.9145 | 0.9993 | 0.8293 | 0.7407 |
0.0014 | 14.2857 | 200 | 0.0016 | 0.8721 | 0.9123 | 0.9994 | 0.8248 | 0.7449 |
0.0016 | 15.0 | 210 | 0.0016 | 0.8704 | 0.9082 | 0.9994 | 0.8166 | 0.7414 |
0.0023 | 15.7143 | 220 | 0.0017 | 0.8709 | 0.9175 | 0.9993 | 0.8352 | 0.7425 |
0.0023 | 16.4286 | 230 | 0.0016 | 0.8732 | 0.9188 | 0.9994 | 0.8379 | 0.7470 |
0.0019 | 17.1429 | 240 | 0.0016 | 0.8731 | 0.9153 | 0.9994 | 0.8308 | 0.7468 |
0.0018 | 17.8571 | 250 | 0.0016 | 0.8726 | 0.9094 | 0.9994 | 0.8191 | 0.7459 |
0.0027 | 18.5714 | 260 | 0.0016 | 0.8697 | 0.9016 | 0.9994 | 0.8033 | 0.7400 |
0.0013 | 19.2857 | 270 | 0.0016 | 0.8758 | 0.9214 | 0.9994 | 0.8431 | 0.7523 |
0.0036 | 20.0 | 280 | 0.0016 | 0.8750 | 0.9226 | 0.9994 | 0.8456 | 0.7506 |
0.0025 | 20.7143 | 290 | 0.0016 | 0.8751 | 0.9293 | 0.9994 | 0.8589 | 0.7509 |
0.0016 | 21.4286 | 300 | 0.0016 | 0.8725 | 0.9095 | 0.9994 | 0.8192 | 0.7457 |
0.0032 | 22.1429 | 310 | 0.0016 | 0.8737 | 0.9102 | 0.9994 | 0.8206 | 0.7481 |
0.002 | 22.8571 | 320 | 0.0016 | 0.8772 | 0.9304 | 0.9994 | 0.8610 | 0.7550 |
0.0012 | 23.5714 | 330 | 0.0016 | 0.8760 | 0.9151 | 0.9994 | 0.8304 | 0.7526 |
0.0012 | 24.2857 | 340 | 0.0016 | 0.8767 | 0.9226 | 0.9994 | 0.8454 | 0.7541 |
0.0028 | 25.0 | 350 | 0.0015 | 0.8771 | 0.9205 | 0.9994 | 0.8413 | 0.7548 |
0.0021 | 25.7143 | 360 | 0.0015 | 0.8769 | 0.9176 | 0.9994 | 0.8354 | 0.7543 |
0.0016 | 26.4286 | 370 | 0.0015 | 0.8763 | 0.9156 | 0.9994 | 0.8315 | 0.7533 |
0.0025 | 27.1429 | 380 | 0.0016 | 0.8742 | 0.9171 | 0.9994 | 0.8345 | 0.7490 |
0.0029 | 27.8571 | 390 | 0.0016 | 0.8763 | 0.9322 | 0.9994 | 0.8647 | 0.7532 |
0.0025 | 28.5714 | 400 | 0.0015 | 0.8767 | 0.9194 | 0.9994 | 0.8391 | 0.7539 |
0.0022 | 29.2857 | 410 | 0.0015 | 0.8783 | 0.9205 | 0.9994 | 0.8413 | 0.7572 |
0.0014 | 30.0 | 420 | 0.0016 | 0.8792 | 0.9318 | 0.9994 | 0.8639 | 0.7590 |
0.0027 | 30.7143 | 430 | 0.0015 | 0.8786 | 0.9269 | 0.9994 | 0.8541 | 0.7578 |
0.0038 | 31.4286 | 440 | 0.0015 | 0.8787 | 0.9270 | 0.9994 | 0.8544 | 0.7581 |
0.0014 | 32.1429 | 450 | 0.0015 | 0.8781 | 0.9243 | 0.9994 | 0.8490 | 0.7569 |
0.0015 | 32.8571 | 460 | 0.0015 | 0.8781 | 0.9214 | 0.9994 | 0.8431 | 0.7568 |
0.0034 | 33.5714 | 470 | 0.0015 | 0.8769 | 0.9136 | 0.9994 | 0.8275 | 0.7544 |
0.0048 | 34.2857 | 480 | 0.0015 | 0.8783 | 0.9310 | 0.9994 | 0.8623 | 0.7573 |
0.0025 | 35.0 | 490 | 0.0015 | 0.8783 | 0.9210 | 0.9994 | 0.8422 | 0.7572 |
0.0029 | 35.7143 | 500 | 0.0015 | 0.8788 | 0.9234 | 0.9994 | 0.8470 | 0.7582 |
0.0024 | 36.4286 | 510 | 0.0015 | 0.8797 | 0.9286 | 0.9994 | 0.8576 | 0.7600 |
0.0013 | 37.1429 | 520 | 0.0015 | 0.8792 | 0.9197 | 0.9994 | 0.8396 | 0.7589 |
0.0023 | 37.8571 | 530 | 0.0015 | 0.8797 | 0.9240 | 0.9994 | 0.8484 | 0.7601 |
0.0017 | 38.5714 | 540 | 0.0015 | 0.8802 | 0.9269 | 0.9994 | 0.8541 | 0.7610 |
0.0023 | 39.2857 | 550 | 0.0015 | 0.8801 | 0.9248 | 0.9994 | 0.8498 | 0.7609 |
0.0027 | 40.0 | 560 | 0.0015 | 0.8806 | 0.9297 | 0.9994 | 0.8596 | 0.7618 |
0.0029 | 40.7143 | 570 | 0.0015 | 0.8798 | 0.9209 | 0.9994 | 0.8420 | 0.7602 |
0.0035 | 41.4286 | 580 | 0.0015 | 0.8776 | 0.9129 | 0.9994 | 0.8261 | 0.7557 |
0.0025 | 42.1429 | 590 | 0.0015 | 0.8792 | 0.9197 | 0.9994 | 0.8397 | 0.7590 |
0.0011 | 42.8571 | 600 | 0.0015 | 0.8813 | 0.9312 | 0.9994 | 0.8628 | 0.7632 |
0.0022 | 43.5714 | 610 | 0.0015 | 0.8803 | 0.9254 | 0.9994 | 0.8511 | 0.7612 |
0.0029 | 44.2857 | 620 | 0.0015 | 0.8796 | 0.9199 | 0.9994 | 0.8400 | 0.7597 |
0.0017 | 45.0 | 630 | 0.0015 | 0.8808 | 0.9254 | 0.9994 | 0.8511 | 0.7621 |
0.0013 | 45.7143 | 640 | 0.0015 | 0.8815 | 0.9276 | 0.9994 | 0.8554 | 0.7635 |
0.0026 | 46.4286 | 650 | 0.0015 | 0.8798 | 0.9258 | 0.9994 | 0.8518 | 0.7602 |
0.0018 | 47.1429 | 660 | 0.0015 | 0.8803 | 0.9307 | 0.9994 | 0.8616 | 0.7613 |
0.0016 | 47.8571 | 670 | 0.0015 | 0.8811 | 0.9272 | 0.9994 | 0.8546 | 0.7627 |
0.001 | 48.5714 | 680 | 0.0015 | 0.8796 | 0.9160 | 0.9994 | 0.8321 | 0.7598 |
0.002 | 49.2857 | 690 | 0.0015 | 0.8807 | 0.9314 | 0.9994 | 0.8632 | 0.7621 |
0.0021 | 50.0 | 700 | 0.0015 | 0.8797 | 0.9235 | 0.9994 | 0.8473 | 0.7600 |
0.0019 | 50.7143 | 710 | 0.0015 | 0.8800 | 0.9229 | 0.9994 | 0.8461 | 0.7606 |
0.0013 | 51.4286 | 720 | 0.0015 | 0.8794 | 0.9212 | 0.9994 | 0.8427 | 0.7593 |
0.0032 | 52.1429 | 730 | 0.0015 | 0.8806 | 0.9229 | 0.9994 | 0.8461 | 0.7618 |
0.0015 | 52.8571 | 740 | 0.0015 | 0.8813 | 0.9268 | 0.9994 | 0.8540 | 0.7632 |
0.0027 | 53.5714 | 750 | 0.0015 | 0.8807 | 0.9235 | 0.9994 | 0.8472 | 0.7620 |
0.0018 | 54.2857 | 760 | 0.0015 | 0.8806 | 0.9209 | 0.9994 | 0.8420 | 0.7618 |
0.0028 | 55.0 | 770 | 0.0015 | 0.8817 | 0.9245 | 0.9994 | 0.8493 | 0.7639 |
0.0019 | 55.7143 | 780 | 0.0015 | 0.8797 | 0.9154 | 0.9994 | 0.8311 | 0.7601 |
0.0017 | 56.4286 | 790 | 0.0015 | 0.8815 | 0.9238 | 0.9994 | 0.8479 | 0.7636 |
0.001 | 57.1429 | 800 | 0.0015 | 0.8811 | 0.9227 | 0.9994 | 0.8456 | 0.7628 |
0.0022 | 57.8571 | 810 | 0.0015 | 0.8827 | 0.9303 | 0.9994 | 0.8610 | 0.7660 |
0.0012 | 58.5714 | 820 | 0.0015 | 0.8825 | 0.9237 | 0.9994 | 0.8475 | 0.7656 |
0.0018 | 59.2857 | 830 | 0.0015 | 0.8831 | 0.9268 | 0.9994 | 0.8538 | 0.7667 |
0.0022 | 60.0 | 840 | 0.0015 | 0.8821 | 0.9263 | 0.9994 | 0.8530 | 0.7649 |
0.0021 | 60.7143 | 850 | 0.0015 | 0.8821 | 0.9246 | 0.9994 | 0.8494 | 0.7647 |
0.0033 | 61.4286 | 860 | 0.0015 | 0.8818 | 0.9277 | 0.9994 | 0.8556 | 0.7642 |
0.0034 | 62.1429 | 870 | 0.0015 | 0.8817 | 0.9231 | 0.9994 | 0.8465 | 0.7640 |
0.0037 | 62.8571 | 880 | 0.0015 | 0.8821 | 0.9261 | 0.9994 | 0.8524 | 0.7647 |
0.0018 | 63.5714 | 890 | 0.0015 | 0.8831 | 0.9334 | 0.9994 | 0.8671 | 0.7668 |
0.0018 | 64.2857 | 900 | 0.0015 | 0.8830 | 0.9316 | 0.9994 | 0.8635 | 0.7667 |
0.0035 | 65.0 | 910 | 0.0015 | 0.8806 | 0.9153 | 0.9994 | 0.8309 | 0.7618 |
0.0018 | 65.7143 | 920 | 0.0015 | 0.8814 | 0.9312 | 0.9994 | 0.8627 | 0.7635 |
0.0015 | 66.4286 | 930 | 0.0015 | 0.8826 | 0.9264 | 0.9994 | 0.8531 | 0.7657 |
0.0016 | 67.1429 | 940 | 0.0015 | 0.8836 | 0.9358 | 0.9994 | 0.8719 | 0.7677 |
0.0023 | 67.8571 | 950 | 0.0015 | 0.8820 | 0.9215 | 0.9994 | 0.8433 | 0.7645 |
0.0015 | 68.5714 | 960 | 0.0015 | 0.8816 | 0.9283 | 0.9994 | 0.8569 | 0.7639 |
0.0023 | 69.2857 | 970 | 0.0015 | 0.8833 | 0.9302 | 0.9994 | 0.8607 | 0.7673 |
0.0036 | 70.0 | 980 | 0.0015 | 0.8824 | 0.9256 | 0.9994 | 0.8515 | 0.7654 |
0.0011 | 70.7143 | 990 | 0.0015 | 0.8816 | 0.9268 | 0.9994 | 0.8538 | 0.7637 |
0.0034 | 71.4286 | 1000 | 0.0015 | 0.8818 | 0.9267 | 0.9994 | 0.8536 | 0.7643 |
0.0014 | 72.1429 | 1010 | 0.0015 | 0.8833 | 0.9303 | 0.9994 | 0.8609 | 0.7672 |
0.0011 | 72.8571 | 1020 | 0.0015 | 0.8827 | 0.9287 | 0.9994 | 0.8577 | 0.7659 |
0.0014 | 73.5714 | 1030 | 0.0015 | 0.8819 | 0.9257 | 0.9994 | 0.8516 | 0.7643 |
0.001 | 74.2857 | 1040 | 0.0015 | 0.8829 | 0.9294 | 0.9994 | 0.8591 | 0.7665 |
0.0026 | 75.0 | 1050 | 0.0015 | 0.8812 | 0.9210 | 0.9994 | 0.8423 | 0.7629 |
0.0014 | 75.7143 | 1060 | 0.0015 | 0.8823 | 0.9288 | 0.9994 | 0.8579 | 0.7653 |
0.0029 | 76.4286 | 1070 | 0.0015 | 0.8825 | 0.9244 | 0.9994 | 0.8490 | 0.7656 |
0.0007 | 77.1429 | 1080 | 0.0015 | 0.8828 | 0.9268 | 0.9994 | 0.8538 | 0.7662 |
0.0021 | 77.8571 | 1090 | 0.0015 | 0.8829 | 0.9257 | 0.9994 | 0.8517 | 0.7664 |
0.002 | 78.5714 | 1100 | 0.0015 | 0.8835 | 0.9270 | 0.9994 | 0.8542 | 0.7675 |
0.0025 | 79.2857 | 1110 | 0.0015 | 0.8833 | 0.9276 | 0.9994 | 0.8554 | 0.7673 |
0.0026 | 80.0 | 1120 | 0.0015 | 0.8831 | 0.9255 | 0.9994 | 0.8513 | 0.7669 |
0.0035 | 80.7143 | 1130 | 0.0015 | 0.8841 | 0.9306 | 0.9994 | 0.8615 | 0.7689 |
0.0016 | 81.4286 | 1140 | 0.0015 | 0.8833 | 0.9256 | 0.9994 | 0.8515 | 0.7672 |
0.0018 | 82.1429 | 1150 | 0.0015 | 0.8828 | 0.9266 | 0.9994 | 0.8535 | 0.7661 |
0.0024 | 82.8571 | 1160 | 0.0015 | 0.8831 | 0.9280 | 0.9994 | 0.8563 | 0.7668 |
0.0022 | 83.5714 | 1170 | 0.0015 | 0.8836 | 0.9309 | 0.9994 | 0.8620 | 0.7677 |
0.0018 | 84.2857 | 1180 | 0.0015 | 0.8835 | 0.9303 | 0.9994 | 0.8608 | 0.7676 |
0.0014 | 85.0 | 1190 | 0.0015 | 0.8832 | 0.9266 | 0.9994 | 0.8535 | 0.7669 |
0.0013 | 85.7143 | 1200 | 0.0015 | 0.8838 | 0.9273 | 0.9994 | 0.8548 | 0.7682 |
0.0033 | 86.4286 | 1210 | 0.0014 | 0.8836 | 0.9316 | 0.9994 | 0.8635 | 0.7678 |
0.0023 | 87.1429 | 1220 | 0.0015 | 0.8831 | 0.9231 | 0.9994 | 0.8465 | 0.7667 |
0.0027 | 87.8571 | 1230 | 0.0014 | 0.8834 | 0.9284 | 0.9994 | 0.8571 | 0.7675 |
0.0014 | 88.5714 | 1240 | 0.0015 | 0.8833 | 0.9285 | 0.9994 | 0.8572 | 0.7672 |
0.0025 | 89.2857 | 1250 | 0.0014 | 0.8836 | 0.9276 | 0.9994 | 0.8555 | 0.7678 |
0.003 | 90.0 | 1260 | 0.0014 | 0.8842 | 0.9299 | 0.9994 | 0.8600 | 0.7690 |
0.0022 | 90.7143 | 1270 | 0.0014 | 0.8842 | 0.9271 | 0.9994 | 0.8545 | 0.7690 |
0.0024 | 91.4286 | 1280 | 0.0014 | 0.8839 | 0.9285 | 0.9994 | 0.8572 | 0.7684 |
0.0017 | 92.1429 | 1290 | 0.0014 | 0.8835 | 0.9262 | 0.9994 | 0.8526 | 0.7676 |
0.0014 | 92.8571 | 1300 | 0.0014 | 0.8830 | 0.9243 | 0.9994 | 0.8488 | 0.7666 |
0.0018 | 93.5714 | 1310 | 0.0014 | 0.8836 | 0.9293 | 0.9994 | 0.8589 | 0.7678 |
0.0019 | 94.2857 | 1320 | 0.0014 | 0.8833 | 0.9265 | 0.9994 | 0.8532 | 0.7673 |
0.0027 | 95.0 | 1330 | 0.0015 | 0.8831 | 0.9250 | 0.9994 | 0.8503 | 0.7667 |
0.0008 | 95.7143 | 1340 | 0.0015 | 0.8835 | 0.9275 | 0.9994 | 0.8553 | 0.7677 |
0.0033 | 96.4286 | 1350 | 0.0015 | 0.8835 | 0.9280 | 0.9994 | 0.8563 | 0.7675 |
0.0021 | 97.1429 | 1360 | 0.0015 | 0.8834 | 0.9268 | 0.9994 | 0.8540 | 0.7675 |
0.0016 | 97.8571 | 1370 | 0.0015 | 0.8836 | 0.9271 | 0.9994 | 0.8545 | 0.7677 |
0.0039 | 98.5714 | 1380 | 0.0014 | 0.8835 | 0.9255 | 0.9994 | 0.8513 | 0.7677 |
0.0017 | 99.2857 | 1390 | 0.0014 | 0.8836 | 0.9257 | 0.9994 | 0.8517 | 0.7677 |
0.0046 | 100.0 | 1400 | 0.0014 | 0.8838 | 0.9271 | 0.9994 | 0.8545 | 0.7682 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PushkarA07/segformer-b0-finetuned-batch3-26May
Unable to build the model tree, the base model loops to the model itself. Learn more.