|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
Model Usage: |
|
|
|
~~~ |
|
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
device_map="auto", |
|
) |
|
processor = AutoProcessor.from_pretrained(model_path, max_pixels=262144) |
|
|
|
|
|
reason_prompt = r"You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning process MUST BE enclosed within <think> </think> tags. During this reasoning process, prioritize analyzing the local regions of the image by leveraging the bounding box coordinates in the format [x_min, y_min, x_max, y_max]. The final answer MUST BE put in \boxed{}. An example is like: <think> reasoning process 1 with [x_min1, y_min1, x_max1, y_max1]; reasoning process 2 with [x_min2, y_min2, x_max2, y_max2] </think>. The answer is: \boxed{answer}." |
|
|
|
def get_label(images, content1): |
|
content_list = [] |
|
for image_url in images: |
|
content_list.append({ |
|
"type": "image", |
|
"image": image_url, |
|
}) |
|
if mode == 'think': |
|
content_list.append({"type": "text", |
|
"text": content1 + '\n' + reason_prompt + '\n'}) |
|
else: |
|
content_list.append({"type": "text", |
|
"text": content1}) |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": content_list |
|
} |
|
] |
|
|
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
# print(text) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
# Inference: Generation of the output |
|
generated_ids = model.generate(**inputs, max_new_tokens=4096, do_sample=True, temperature=0.6) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
# print(output_text) |
|
# print(output_text[0]) |
|
return output_text[0] |
|
|
|
~~~ |