s2t-small-uit-vimd-finetuned

This model is a fine-tuned version of lock_s2t-small-uit-vimd_192355 on the UIT-ViMD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9924
  • Wer: 0.2993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • training_steps: 40000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.7572 0.0490 46 1.8361 0.6165
1.7571 0.0980 92 1.8453 0.6250
1.7017 0.1470 138 1.8005 0.6551
1.6797 0.1960 184 1.7893 0.6621
1.6581 0.2449 230 1.7749 0.6178
1.6088 0.2939 276 1.7541 0.6911
1.624 0.3429 322 1.7435 0.6374
1.6397 0.3919 368 1.7343 0.6046
1.5714 0.4409 414 1.7033 0.5620
1.5615 0.4899 460 1.6827 0.6565
1.5751 0.5389 506 1.6752 0.5916
1.5767 0.5879 552 1.6542 0.5945
1.5185 0.6368 598 1.6385 0.6006
1.5641 0.6858 644 1.6269 0.5714
1.4975 0.7348 690 1.6170 0.5542
1.5288 0.7838 736 1.6039 0.5483
1.5106 0.8328 782 1.6066 0.5137
1.4704 0.8818 828 1.5884 0.5148
1.4625 0.9308 874 1.5818 0.5367
1.4827 0.9798 920 1.5753 0.5805
1.4287 1.0288 966 1.5727 0.6089
1.423 1.0777 1012 1.5546 0.5685
1.4065 1.1267 1058 1.5430 0.5897
1.4159 1.1757 1104 1.5189 0.5792
1.4114 1.2247 1150 1.5148 0.5591
1.3863 1.2737 1196 1.5100 0.5359
1.4605 1.3227 1242 1.5091 0.4837
1.4049 1.3717 1288 1.4959 0.4890
1.3761 1.4207 1334 1.4824 0.4645
1.4008 1.4696 1380 1.4540 0.4528
1.3893 1.5186 1426 1.4479 0.4949
1.3644 1.5676 1472 1.4556 0.5312
1.3774 1.6166 1518 1.4441 0.5046
1.3733 1.6656 1564 1.4311 0.4608
1.3722 1.7146 1610 1.4247 0.4935
1.3116 1.7636 1656 1.4148 0.4273
1.3391 1.8126 1702 1.4128 0.5014
1.3505 1.8616 1748 1.4087 0.5013
1.3371 1.9105 1794 1.3920 0.4507
1.3235 1.9595 1840 1.3964 0.4842
1.3062 2.0085 1886 1.3700 0.5218
1.2194 2.0575 1932 1.3757 0.4731
1.2488 2.1065 1978 1.3812 0.4668
1.2392 2.1555 2024 1.3662 0.4557
1.2676 2.2045 2070 1.3563 0.4734
1.2242 2.2535 2116 1.3378 0.4319
1.2472 2.3024 2162 1.3513 0.4442
1.2285 2.3514 2208 1.3445 0.4385
1.2297 2.4004 2254 1.3343 0.4627
1.2016 2.4494 2300 1.3360 0.4493
1.2439 2.4984 2346 1.3183 0.4480
1.2096 2.5474 2392 1.3168 0.4394
1.227 2.5964 2438 1.3125 0.4417
1.1905 2.6454 2484 1.3057 0.4047
1.1681 2.6944 2530 1.2961 0.4139
1.2209 2.7433 2576 1.2938 0.4135
1.2029 2.7923 2622 1.2849 0.4332
1.1977 2.8413 2668 1.2938 0.4267
1.1976 2.8903 2714 1.2877 0.4259
1.1939 2.9393 2760 1.2771 0.4133
1.2151 2.9883 2806 1.2670 0.4197
1.1395 3.0373 2852 1.2865 0.4354
1.0845 3.0863 2898 1.2641 0.4316
1.0471 3.1353 2944 1.2609 0.4099
1.1189 3.1842 2990 1.2681 0.4265
1.1358 3.2332 3036 1.2564 0.3983
1.1279 3.2822 3082 1.2441 0.4326
1.157 3.3312 3128 1.2515 0.3814
1.0963 3.3802 3174 1.2468 0.4001
1.0981 3.4292 3220 1.2414 0.4206
1.1165 3.4782 3266 1.2393 0.3809
1.0594 3.5272 3312 1.2229 0.3851
1.0668 3.5761 3358 1.2264 0.3760
1.0991 3.6251 3404 1.2175 0.3931
1.1016 3.6741 3450 1.2042 0.3946
1.068 3.7231 3496 1.2146 0.3618
1.0918 3.7721 3542 1.1883 0.3902
1.077 3.8211 3588 1.2077 0.3696
1.0912 3.8701 3634 1.1838 0.3970
1.0739 3.9191 3680 1.1903 0.3668
1.1475 3.9681 3726 1.1983 0.3841
1.0658 4.0170 3772 1.1937 0.3725
1.0177 4.0660 3818 1.1894 0.3790
0.9442 4.1150 3864 1.2047 0.3572
1.0337 4.1640 3910 1.1978 0.3561
1.0644 4.2130 3956 1.2001 0.3586
0.9971 4.2620 4002 1.1912 0.3502
1.0139 4.3110 4048 1.1946 0.3671
1.007 4.3600 4094 1.1893 0.3618
1.03 4.4089 4140 1.1738 0.3644
1.0011 4.4579 4186 1.1887 0.4018
0.9874 4.5069 4232 1.1751 0.3741
1.0079 4.5559 4278 1.1790 0.3867
1.0059 4.6049 4324 1.1649 0.3768
1.0051 4.6539 4370 1.1648 0.3918
1.0397 4.7029 4416 1.1517 0.3698
1.0216 4.7519 4462 1.1600 0.3585
0.9799 4.8009 4508 1.1628 0.3538
1.0347 4.8498 4554 1.1560 0.3562
0.9958 4.8988 4600 1.1504 0.3481
1.019 4.9478 4646 1.1421 0.3637
1.0019 4.9968 4692 1.1248 0.3765
0.9473 5.0458 4738 1.1379 0.3521
0.9194 5.0948 4784 1.1369 0.3481
0.928 5.1438 4830 1.1418 0.3495
0.9204 5.1928 4876 1.1392 0.3977
0.9382 5.2417 4922 1.1333 0.3462
0.9572 5.2907 4968 1.1376 0.3471
0.939 5.3397 5014 1.1436 0.3446
0.9695 5.3887 5060 1.1225 0.3422
0.9303 5.4377 5106 1.1261 0.3562
0.9572 5.4867 5152 1.1320 0.3543
0.9614 5.5357 5198 1.1267 0.3564
0.9328 5.5847 5244 1.1318 0.3872
0.9005 5.6337 5290 1.1323 0.3379
0.9758 5.6826 5336 1.1254 0.3390
0.9411 5.7316 5382 1.1224 0.3919
0.9359 5.7806 5428 1.1112 0.3617
0.9433 5.8296 5474 1.0961 0.3325
0.9454 5.8786 5520 1.0988 0.3443
0.923 5.9276 5566 1.1049 0.3267
0.9525 5.9766 5612 1.0973 0.3682
0.9083 6.0256 5658 1.0923 0.3368
0.912 6.0745 5704 1.1067 0.3322
0.858 6.1235 5750 1.1026 0.3382
0.9162 6.1725 5796 1.0954 0.3486
0.8776 6.2215 5842 1.0930 0.3620
0.8828 6.2705 5888 1.0965 0.3266
0.8723 6.3195 5934 1.0964 0.3175
0.8524 6.3685 5980 1.0978 0.3379
0.8791 6.4175 6026 1.1007 0.3640
0.8962 6.4665 6072 1.0807 0.3363
0.9189 6.5154 6118 1.0934 0.3363
0.8487 6.5644 6164 1.0807 0.3247
0.8904 6.6134 6210 1.0922 0.3398
0.8679 6.6624 6256 1.0910 0.3491
0.89 6.7114 6302 1.0819 0.3277
0.9157 6.7604 6348 1.0806 0.3457
0.8636 6.8094 6394 1.0757 0.3245
0.8912 6.8584 6440 1.0726 0.3460
0.9072 6.9073 6486 1.0707 0.3315
0.8774 6.9563 6532 1.0611 0.3221
0.8869 7.0053 6578 1.0692 0.3204
0.8122 7.0543 6624 1.0877 0.3116
0.8716 7.1033 6670 1.0745 0.3306
0.8196 7.1523 6716 1.0662 0.3261
0.8396 7.2013 6762 1.0625 0.3172
0.8319 7.2503 6808 1.0560 0.3226
0.848 7.2993 6854 1.0851 0.3277
0.8479 7.3482 6900 1.0611 0.3226
0.8153 7.3972 6946 1.0742 0.3350
0.8269 7.4462 6992 1.0741 0.3334
0.8385 7.4952 7038 1.0639 0.3465
0.8096 7.5442 7084 1.0757 0.3494
0.8544 7.5932 7130 1.0519 0.3507
0.8415 7.6422 7176 1.0547 0.3524
0.8645 7.6912 7222 1.0560 0.3416
0.8594 7.7401 7268 1.0589 0.3264
0.8092 7.7891 7314 1.0535 0.3441
0.8595 7.8381 7360 1.0498 0.3379
0.8432 7.8871 7406 1.0523 0.3252
0.8735 7.9361 7452 1.0557 0.3749
0.8588 7.9851 7498 1.0536 0.3186
0.8199 8.0341 7544 1.0510 0.3318
0.7679 8.0831 7590 1.0604 0.3446
0.789 8.1321 7636 1.0530 0.3444
0.7756 8.1810 7682 1.0377 0.3570
0.7923 8.2300 7728 1.0643 0.3747
0.7933 8.2790 7774 1.0546 0.3181
0.7804 8.3280 7820 1.0455 0.3275
0.7988 8.3770 7866 1.0362 0.3358
0.8083 8.4260 7912 1.0341 0.3301
0.7837 8.4750 7958 1.0330 0.3460
0.8011 8.5240 8004 1.0370 0.3537
0.8241 8.5729 8050 1.0383 0.3272
0.7776 8.6219 8096 1.0266 0.3468
0.7931 8.6709 8142 1.0358 0.3177
0.8014 8.7199 8188 1.0329 0.3178
0.814 8.7689 8234 1.0409 0.3838
0.8312 8.8179 8280 1.0403 0.3232
0.8477 8.8669 8326 1.0332 0.3193
0.816 8.9159 8372 1.0259 0.3216
0.8083 8.9649 8418 1.0208 0.3099
0.8057 9.0138 8464 1.0238 0.3218
0.7335 9.0628 8510 1.0403 0.3240
0.7546 9.1118 8556 1.0388 0.3309
0.7287 9.1608 8602 1.0240 0.3197
0.7685 9.2098 8648 1.0375 0.3317
0.7734 9.2588 8694 1.0431 0.3336
0.8028 9.3078 8740 1.0522 0.3272
0.7345 9.3568 8786 1.0398 0.3146
0.7659 9.4058 8832 1.0259 0.3548
0.7735 9.4547 8878 1.0353 0.3199
0.7758 9.5037 8924 1.0259 0.3487
0.7496 9.5527 8970 1.0229 0.3287
0.7764 9.6017 9016 1.0332 0.3502
0.7826 9.6507 9062 1.0285 0.3231
0.7731 9.6997 9108 1.0202 0.3481
0.7714 9.7487 9154 1.0272 0.3344
0.7781 9.7977 9200 1.0170 0.3204
0.8076 9.8466 9246 1.0104 0.3266
0.7609 9.8956 9292 1.0145 0.3127
0.7595 9.9446 9338 1.0116 0.3118
0.7975 9.9936 9384 1.0146 0.3099
0.7265 10.0426 9430 1.0183 0.3097
0.702 10.0916 9476 1.0155 0.3114
0.7254 10.1406 9522 1.0299 0.3419
0.7453 10.1896 9568 1.0093 0.3127
0.7232 10.2386 9614 1.0165 0.3242
0.7516 10.2875 9660 1.0097 0.3395
0.7404 10.3365 9706 1.0181 0.3535
0.7419 10.3855 9752 1.0072 0.3199
0.7193 10.4345 9798 1.0088 0.3116
0.6984 10.4835 9844 1.0169 0.3216
0.7382 10.5325 9890 1.0142 0.3462
0.7495 10.5815 9936 1.0101 0.3336
0.7388 10.6305 9982 1.0111 0.3389
0.7348 10.6794 10028 1.0037 0.3397
0.7586 10.7284 10074 0.9927 0.3521
0.7304 10.7774 10120 1.0082 0.3298
0.7667 10.8264 10166 1.0086 0.3279
0.7357 10.8754 10212 0.9974 0.3196
0.793 10.9244 10258 1.0059 0.3545
0.7668 10.9734 10304 0.9908 0.3186
0.7007 11.0224 10350 1.0085 0.3162
0.7216 11.0714 10396 0.9879 0.3159
0.6698 11.1203 10442 0.9882 0.3197
0.7225 11.1693 10488 1.0060 0.3102
0.709 11.2183 10534 1.0000 0.2944
0.6797 11.2673 10580 1.0035 0.3127
0.7062 11.3163 10626 0.9957 0.3146
0.7043 11.3653 10672 0.9986 0.3097
0.6759 11.4143 10718 1.0029 0.3201
0.7107 11.4633 10764 0.9810 0.3609
0.7013 11.5122 10810 0.9798 0.3280
0.6903 11.5612 10856 0.9827 0.3207
0.6967 11.6102 10902 0.9906 0.3105
0.7206 11.6592 10948 0.9862 0.3127
0.7435 11.7082 10994 0.9853 0.3078
0.7311 11.7572 11040 1.0085 0.3309
0.7318 11.8062 11086 1.0002 0.3172
0.7397 11.8552 11132 0.9791 0.3169
0.7179 11.9042 11178 0.9846 0.3145
0.7143 11.9531 11224 0.9977 0.3033
0.7496 12.0021 11270 0.9967 0.3285
0.6547 12.0511 11316 0.9954 0.3065
0.6897 12.1001 11362 1.0002 0.3076
0.6642 12.1491 11408 0.9978 0.3142
0.661 12.1981 11454 0.9927 0.3057
0.6781 12.2471 11500 0.9992 0.3162
0.6856 12.2961 11546 1.0077 0.3151
0.6776 12.3450 11592 0.9895 0.3197
0.6921 12.3940 11638 1.0124 0.3204
0.6982 12.4430 11684 1.0040 0.3103
0.6885 12.4920 11730 0.9951 0.3113
0.679 12.5410 11776 1.0012 0.3089
0.6974 12.5900 11822 0.9946 0.3202
0.6862 12.6390 11868 0.9875 0.3076
0.6929 12.6880 11914 0.9867 0.3099
0.6526 12.7370 11960 0.9897 0.3078
0.7107 12.7859 12006 0.9849 0.3228
0.6697 12.8349 12052 0.9829 0.3430
0.6986 12.8839 12098 0.9949 0.3373
0.7056 12.9329 12144 0.9660 0.3389
0.722 12.9819 12190 0.9513 0.3239
0.6482 13.0309 12236 0.9834 0.3559
0.651 13.0799 12282 0.9834 0.3317
0.612 13.1289 12328 0.9858 0.3354
0.6633 13.1778 12374 0.9837 0.3266
0.6286 13.2268 12420 0.9792 0.3303
0.6242 13.2758 12466 0.9844 0.3293
0.663 13.3248 12512 0.9814 0.3285
0.6688 13.3738 12558 0.9924 0.2993

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0
Downloads last month
21
Safetensors
Model size
32.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results