wav2vec2-base-960h_041426

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the UIT-ViMD dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3332
  • Wer: 0.9997

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
13.3195 0.9787 23 11.5720 0.9997
8.8443 1.9362 46 4.6994 0.9997
4.4565 2.8936 69 3.6900 0.9997
3.5367 3.8511 92 3.3994 0.9997
3.3029 4.8085 115 3.3583 0.9997
3.2993 5.7660 138 3.3439 0.9997
3.2675 6.7234 161 3.3632 0.9997
3.258 7.6809 184 3.3283 0.9997
3.2519 8.6383 207 3.3472 0.9997
3.2528 9.5957 230 3.3368 0.9997
3.2501 10.5532 253 3.3426 0.9998
3.247 11.5106 276 3.3382 0.9997
3.2484 12.4681 299 3.3332 0.9997

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
31
Safetensors
Model size
94.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for QuanHoangNgoc/wav2vec2-base-960h_041426

Finetuned
(148)
this model

Evaluation results