https://github.com/baaivision/EVA/tree/master/EVA-CLIP

Summary of EVA-CLIP performance

summary_tab

Model Card

EVA-01-CLIP Series (MIM teacher: OpenAI CLIP-Large)

model name total #params training precision training data training batch size gpus for training IN-1K zero-shot top-1 MSCOCO T2I R@5 weight
EVA01_CLIP_g_14_psz14_s11B 1.1B fp16 LAION-400M 41K 256 A100(40GB) 78.5 68.5 πŸ€— HF link (2.2GB)
EVA01_CLIP_g_14_plus_psz14_s11B 1.3B fp16 Merged-2B 114K 112 A100(40GB) 79.3 74.0 πŸ€— HF link (2.7GB)

EVA-02-CLIP Series (MIM teacher: EVA01_CLIP_g_14_psz14_s11B)

model name image enc. init. ckpt text enc. init. ckpt total #params training precision training data training batch size gpus for training IN-1K zero-shot top-1 MSCOCO T2I R@5 weight
EVA02_CLIP_B_psz16_s8B EVA02_B_psz14to16 openai/clip-vit-base-patch16 149M fp16 Merged-2B 131K 64 A100(40GB) 74.7 66.9 πŸ€— HF link (300MB)
EVA02_CLIP_L_psz14_s4B EVA02_L_psz14 openai/clip-vit-large-patch14 428M fp16 Merged-2B 131K 128 A100(40GB) 79.8 71.2 πŸ€— HF link (856MB)
EVA02_CLIP_L_336_psz14_s6B EVA02_CLIP_L_psz14_224to336 EVA02_CLIP_L_psz14_224to336 428M fp16 Merged-2B 61K 128 A100(40GB) 80.4 71.7 πŸ€— HF link (856MB)
EVA02_CLIP_E_psz14_s4B.pt EVA02_E_psz14 laion/CLIP-ViT-H-14-laion2B-s32B-b79K 4.7B fp16 LAION-2B 115K 144 A100(80GB) 81.9 74.7 πŸ€— HF link (9.4GB)
EVA02_CLIP_E_psz14_plus_s9B.pt EVA02_E_psz14 laion/CLIP-ViT-bigG-14-laion2B-39B-b160k 5.0B bf16 LAION-2B 144K 144 A100(80GB) 82.0 75.0 πŸ€— HF link (10.1GB)
  • To construct Merged-2B, we merged 1.6 billion samples from LAION-2B dataset with 0.4 billion samples from COYO-700M.

  • To our knowledge, EVA-CLIP series are the most performant open-sourced CLIP models at all scales, evaluated via zero-shot classification performance, especially on mainstream classification benchmarks such as ImageNet along with its variants. For more details about EVA-CLIP, please refer to our paper.

Pretrained

model name total #params training precision download link
EVA01_g_psz14 1.0B fp16 πŸ€— HF link (2.0GB)
EVA02_B_psz14to16 86M fp16 πŸ€— HF link (176MB)
EVA02_L_psz14 304M fp16 πŸ€— HF link (609MB)
EVA02_CLIP_L_psz14_224to336 428M fp16 πŸ€— HF link (857MB)
EVA02_E_psz14 4.4B fp16 πŸ€— HF link (8.7GB)
openai/clip-vit-base-patch16 149M fp16 πŸ€— HF link (599MB)
openai/clip-vit-large-patch14 428M fp16 πŸ€— HF link (1.7GB)
laion/CLIP-ViT-H-14-laion2B-s32B-b79K 1.0B bf16 πŸ€— HF link (3.9GB)
laion/CLIP-ViT-bigG-14-laion2B-39B-b160k 1.8B bf16 πŸ€— HF link part1 part2(9.9GB+169M)
  • EVA02_B_psz14to16 interpolates the kernel size of patch_embed from 14x14 to 16x16, and interpolate the pos_embed from 16x16 to 14x14.

  • EVA02_CLIP_L_psz14_224to336 interpolates the pos_embed from 16x16 to 24x24 for training EVA02_CLIP_L_336_psz14_s6B.

  • laion/CLIP-ViT-bigG-14-laion2B-39B-b160k consists of 2 parts of weights, part1 and part2.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Spaces using QuanSun/EVA-CLIP 42