|
|
|
--- |
|
|
|
datasets: |
|
- louisbrulenaudet/Romulus-cpt-fr |
|
license: llama3 |
|
language: |
|
- fr |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
tags: |
|
- law |
|
- droit |
|
- unsloth |
|
- trl |
|
- transformers |
|
- sft |
|
- llama |
|
|
|
--- |
|
|
|
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/Romulus-cpt-Llama-3.1-8B-v0.1-GGUF |
|
This is quantized version of [louisbrulenaudet/Romulus-cpt-Llama-3.1-8B-v0.1](https://huggingface.co/louisbrulenaudet/Romulus-cpt-Llama-3.1-8B-v0.1) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
<img src="assets/thumbnail.webp"> |
|
|
|
# Romulus, continually pre-trained models for French law. |
|
|
|
Romulus is a series of continually pre-trained models enriched in French law and intended to serve as the basis for a fine-tuning process on labeled data. Please note that these models have not been aligned for the production of usable text as they stand, and will certainly need to be fine-tuned for the desired tasks in order to produce satisfactory results. |
|
|
|
The training corpus is made up of around 34,864,949 tokens (calculated with the meta-llama/Meta-Llama-3.1-8B tokenizer). |
|
|
|
## Hyperparameters |
|
|
|
The following table outlines the key hyperparameters used for training Romulus. |
|
|
|
| **Parameter** | **Description** | **Value** | |
|
|----------------------------------|-----------------------------------------------------------------|-----------------------------| |
|
| `max_seq_length` | Maximum sequence length for the model | 4096 | |
|
| `load_in_4bit` | Whether to load the model in 4-bit precision | False | |
|
| `model_name` | Pre-trained model name from Hugging Face | meta-llama/Meta-Llama-3.1-8B| |
|
| `r` | Rank of the LoRA adapter | 128 | |
|
| `lora_alpha` | Alpha value for the LoRA module | 32 | |
|
| `lora_dropout` | Dropout rate for LoRA layers | 0 | |
|
| `bias` | Bias type for LoRA adapters | none | |
|
| `use_gradient_checkpointing` | Whether to use gradient checkpointing | unsloth | |
|
| `train_batch_size` | Per device training batch size | 8 | |
|
| `gradient_accumulation_steps` | Number of gradient accumulation steps | 8 | |
|
| `warmup_ratio` | Warmup steps as a fraction of total steps | 0.1 | |
|
| `num_train_epochs` | Number of training epochs | 1 | |
|
| `learning_rate` | Learning rate for the model | 5e-5 | |
|
| `embedding_learning_rate` | Learning rate for embeddings | 1e-5 | |
|
| `optim` | Optimizer used for training | adamw_8bit | |
|
| `weight_decay` | Weight decay to prevent overfitting | 0.01 | |
|
| `lr_scheduler_type` | Type of learning rate scheduler | linear | |
|
|
|
# Training script |
|
|
|
Romulus was trained using Unsloth on a Nvidia H100 Azure EST US instance provided by the Microsoft for Startups program from this script: |
|
|
|
```python |
|
# -*- coding: utf-8 -*- |
|
import os |
|
|
|
from typing import ( |
|
Dict, |
|
) |
|
|
|
from datasets import load_dataset |
|
from unsloth import ( |
|
FastLanguageModel, |
|
is_bfloat16_supported, |
|
UnslothTrainer, |
|
UnslothTrainingArguments, |
|
) |
|
|
|
max_seq_length = 4096 |
|
dtype = None |
|
load_in_4bit = False |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name="meta-llama/Meta-Llama-3.1-8B", |
|
max_seq_length=max_seq_length, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
token="hf_token", |
|
) |
|
|
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r=128, |
|
target_modules=[ |
|
"q_proj", |
|
"k_proj", |
|
"v_proj", |
|
"o_proj", |
|
"gate_proj", |
|
"up_proj", |
|
"down_proj", |
|
"embed_tokens", |
|
"lm_head", |
|
], |
|
lora_alpha=32, |
|
lora_dropout=0, |
|
bias="none", |
|
use_gradient_checkpointing="unsloth", |
|
random_state=3407, |
|
use_rslora=True, |
|
loftq_config=None, |
|
) |
|
|
|
prompt = """### Référence : |
|
{} |
|
### Contenu : |
|
{}""" |
|
|
|
EOS_TOKEN = tokenizer.eos_token |
|
|
|
def formatting_prompts_func(examples): |
|
""" |
|
Format input examples into prompts for a language model. |
|
|
|
This function takes a dictionary of examples containing titles and texts, |
|
combines them into formatted prompts, and appends an end-of-sequence token. |
|
|
|
Parameters |
|
---------- |
|
examples : dict |
|
A dictionary containing two keys: |
|
- 'title': A list of titles. |
|
- 'text': A list of corresponding text content. |
|
|
|
Returns |
|
------- |
|
dict |
|
A dictionary with a single key 'text', containing a list of formatted prompts. |
|
|
|
Notes |
|
----- |
|
- The function assumes the existence of a global `prompt` variable, which is a |
|
formatting string used to combine the title and text. |
|
- The function also assumes the existence of a global `EOS_TOKEN` variable, |
|
which is appended to the end of each formatted prompt. |
|
- The input lists 'title' and 'text' are expected to have the same length. |
|
|
|
Examples |
|
-------- |
|
>>> examples = { |
|
... 'title': ['Title 1', 'Title 2'], |
|
... 'text': ['Content 1', 'Content 2'] |
|
... } |
|
>>> formatting_cpt_prompts_func(examples) |
|
{'text': ['<formatted_prompt_1><EOS>', '<formatted_prompt_2><EOS>']} |
|
""" |
|
refs = examples["ref"] |
|
texts = examples["texte"] |
|
outputs = [] |
|
|
|
for ref, text in zip(refs, texts): |
|
text = prompt.format(ref, text) + EOS_TOKEN |
|
outputs.append(text) |
|
|
|
return { |
|
"text": outputs, |
|
} |
|
|
|
|
|
cpt_dataset = load_dataset( |
|
"louisbrulenaudet/Romulus-cpt-fr", |
|
split="train", |
|
token="hf_token", |
|
) |
|
|
|
cpt_dataset = cpt_dataset.map( |
|
formatting_prompts_func, |
|
batched=True, |
|
) |
|
|
|
trainer = UnslothTrainer( |
|
model=model, |
|
tokenizer=tokenizer, |
|
train_dataset=cpt_dataset, |
|
dataset_text_field="text", |
|
max_seq_length=max_seq_length, |
|
dataset_num_proc=2, |
|
args=UnslothTrainingArguments( |
|
per_device_train_batch_size=8, |
|
gradient_accumulation_steps=8, |
|
warmup_ratio=0.1, |
|
num_train_epochs=1, |
|
learning_rate=5e-5, |
|
embedding_learning_rate=1e-5, |
|
fp16=not is_bfloat16_supported(), |
|
bf16=is_bfloat16_supported(), |
|
logging_steps=1, |
|
report_to="wandb", |
|
save_steps=350, |
|
run_name="romulus-cpt", |
|
optim="adamw_8bit", |
|
weight_decay=0.01, |
|
lr_scheduler_type="linear", |
|
seed=3407, |
|
output_dir="outputs", |
|
), |
|
) |
|
|
|
trainer_stats = trainer.train() |
|
``` |
|
|
|
<img src="assets/loss.png"> |
|
|
|
## Citing & Authors |
|
|
|
If you use this code in your research, please use the following BibTeX entry. |
|
|
|
```BibTeX |
|
@misc{louisbrulenaudet2024, |
|
author = {Louis Brulé Naudet}, |
|
title = {Romulus, continually pre-trained models for French law}, |
|
year = {2024} |
|
howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/Romulus-cpt-fr}}, |
|
} |
|
``` |
|
|
|
## Feedback |
|
|
|
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]). |
|
|