Transformers
GGUF
Inference Endpoints
conversational

QuantFactory Banner

QuantFactory/Teleut-7b-GGUF

This is quantized version of allura-org/Teleut-7b created using llama.cpp

Original Model Card

Teleut 7b

image/png

A replication attempt of Tulu 3 on the Qwen 2.5 base models.

Evals (so far)

Teleut 7B (measured) Tülu 3 SFT 8B (reported) Qwen 2.5 7B Instruct (reported) Ministral 8B (reported) Mistral 7B v0.3 (reported)
BBH (3 shot, CoT) 64.4% 67.9% 21.7% 56.2% 47.0%NLL
GSM8K (8 shot, CoT) 78.5% 76.2% 83.8% 80.0% xx.x%
IFEval (prompt loose) 66.3% 72.8% 74.7% 56.4% 53.0%
MMLU (0 shot, CoT) 73.2% 65.9% 76.6% 68.5% 30.7%5-shot
MMLU Pro (0 shot, CoT) 48.3% 44.3% 56.3%Unknown 32.9%5-shot 30.7%5-shot
PopQA (15 shot) 18.9% 29.3% 18.1% 20.2% xx.x%
TruthfulQA 47.2% 46.8% 63.1% 55.5% xx.x%

Credits

Big thanks to Retis Labs for being providing my 8xH100 polycule used to train and test this model!
Another big thanks to AllenAI for publishing the Tülu 3 data and model series (as well as the paper and details on training), as well as Alibaba for training the original Qwen 2.5 base model series!

@article{lambert2024tulu3,
  title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
  author = {
    Nathan Lambert and 
    Jacob Morrison and 
    Valentina Pyatkin and 
    Shengyi Huang and 
    Hamish Ivison and 
    Faeze Brahman and 
    Lester James V. Miranda and 
    Alisa Liu and 
    Nouha Dziri and 
    Shane Lyu and 
    Yuling Gu and 
    Saumya Malik and 
    Victoria Graf and 
    Jena D. Hwang and 
    Jiangjiang Yang and
    Ronan Le Bras and
    Oyvind Tafjord and
    Chris Wilhelm and
    Luca Soldaini and 
    Noah A. Smith and 
    Yizhong Wang and 
    Pradeep Dasigi and 
    Hannaneh Hajishirzi
  },
  year = {2024},
  email = {[email protected]}
}

Training procedure

Built with Axolotl

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 370
  • num_epochs: 1

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3

Configuration

See axolotl config

axolotl version: 0.5.2

base_model: Qwen/Qwen2.5-7B

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

strict: false

chat_template: chatml
datasets:
  - path: allenai/tulu-3-sft-mixture
    type: chat_template
    split: train
    field_messages: messages

dataset_prepared_path: last_run_prepared
#val_set_size: 0.02
output_dir: ./ckpts

sequence_len: 8192
#sample_packing: true
pad_to_sequence_len: true

wandb_project: qwen-2.5-7b-sft
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 1
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 3.5e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

deepspeed: deepspeed_configs/zero3_bf16.json

warmup_steps: 370
#evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 2
debug:
weight_decay: 0.0

Downloads last month
98
GGUF
Model size
7.62B params
Architecture
qwen2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for QuantFactory/Teleut-7b-GGUF

Base model

Qwen/Qwen2.5-7B
Quantized
(42)
this model

Dataset used to train QuantFactory/Teleut-7b-GGUF