I used AutoAWQ to quantize Kimi K2

$ docker run -it --rm \
  --gpus all \
  --network=host \
  --shm-size=1024g \
  --entrypoint /bin/sh \
  -v /home/hotaisle/workspace/models:/models \
  -v $HOME/.cache/huggingface:/root/.cache/huggingface \
  vllm/vllm-openai:latest \
  -c "pip install blobfile && python3 -m vllm.entrypoints.openai.api_server --model QuixiAI/Kimi-K2-Base-AWQ --port 8000 --tensor-parallel-size 8 --trust-remote-code --gpu-memory-utilization 0.95 --enable-prefix-caching --enable-chunked-prefill --dtype bfloat16"```

vLLM seems to have a bug that prevents it from inferencing.

(VllmWorker rank=1 pid=644) ERROR 08-03 22:42:00 [multiproc_executor.py:511] WorkerProc failed to start.
...
(VllmWorker rank=1 pid=644) ERROR 08-03 22:42:00 [multiproc_executor.py:511]   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/linear.py", line 443, in weight_loader
(VllmWorker rank=1 pid=644) ERROR 08-03 22:42:00 [multiproc_executor.py:511]     param[shard_offset:shard_offset + shard_size] = loaded_weight
(VllmWorker rank=1 pid=644) ERROR 08-03 22:42:00 [multiproc_executor.py:511]     ~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=1 pid=644) ERROR 08-03 22:42:00 [multiproc_executor.py:511] RuntimeError: The expanded size of the tensor (264) must match the existing size (72) at non-singleton dimension 1.  Target sizes: [576, 264].  Tensor sizes: [7168, 72]
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support