Ahma-3B-dpo-slerp
Ahma-3B-dpo-slerp is a merge of the following models using LazyMergekit:
- Finnish-NLP/sft-hf_hf_2024_06_29_14_08_01_checkpoint_564_dpo-checkpoint-249
- Finnish-NLP/sft-hf_hf_2024_07_09_16_33_52_checkpoint_1758_dpo-checkpoint-832
🧩 Configuration
slices:
- sources:
- model: Finnish-NLP/sft-hf_hf_2024_06_29_14_08_01_checkpoint_564_dpo-checkpoint-249
layer_range: [0, 26]
- model: Finnish-NLP/sft-hf_hf_2024_07_09_16_33_52_checkpoint_1758_dpo-checkpoint-832
layer_range: [0, 26]
merge_method: slerp
base_model: Finnish-NLP/sft-hf_hf_2024_06_29_14_08_01_checkpoint_564_dpo-checkpoint-249
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "RASMUS/Ahma-3B-dpo-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for RASMUS/Ahma-3B-dpo-slerp
Merge model
this model