Image-to-Image
Diffusers

Add metadata, link to the project page and Github repository

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +293 -3
README.md CHANGED
@@ -1,3 +1,293 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-to-image
4
+ library_name: diffusers
5
+ ---
6
+
7
+ <h1 align="center"> REPA-E: Unlocking VAE for End-to-End Tuning of Latent Diffusion Transformers </h1>
8
+
9
+ <p align="center">
10
+ <a href="https://scholar.google.com.au/citations?user=GQzvqS4AAAAJ" target="_blank">Xingjian&nbsp;Leng</a><sup>1*</sup> &ensp; <b>&middot;</b> &ensp;
11
+ <a href="https://1jsingh.github.io/" target="_blank">Jaskirat&nbsp;Singh</a><sup>1*</sup> &ensp; <b>&middot;</b> &ensp;
12
+ <a href="https://hou-yz.github.io/" target="_blank">Yunzhong&nbsp;Hou</a><sup>1</sup> &ensp; <b>&middot;</b> &ensp;
13
+ <a href="https://people.csiro.au/X/Z/Zhenchang-Xing/" target="_blank">Zhenchang&nbsp;Xing</a><sup>2</sup>&ensp; <b>&middot;</b> &ensp;
14
+ <a href="https://www.sainingxie.com/" target="_blank">Saining&nbsp;Xie</a><sup>3</sup>&ensp; <b>&middot;</b> &ensp;
15
+ <a href="https://zheng-lab-anu.github.io/" target="_blank">Liang&nbsp;Zheng</a><sup>1</sup>&ensp;
16
+ </p>
17
+
18
+ <p align="center">
19
+ <sup>1</sup> Australian National University &emsp; <sup>2</sup>Data61-CSIRO &emsp; <sup>3</sup>New York University &emsp; <br>
20
+ <sub><sup>*</sup>Project Leads &emsp;</sub>
21
+ </p>
22
+
23
+ <p align="center">
24
+ <a href="https://End2End-Diffusion.github.io">🌐 Project Page</a> &ensp;
25
+ <a href="https://huggingface.co/REPA-E">πŸ€— Models</a> &ensp;
26
+ <a href="https://arxiv.org/abs/2504.10483">πŸ“ƒ Paper</a> &ensp;
27
+ <a href="https://github.com/REPA-E/REPA-E">πŸ’» Code</a> &ensp;
28
+ <br><br>
29
+ <a href="https://paperswithcode.com/sota/image-generation-on-imagenet-256x256?p=repa-e-unlocking-vae-for-end-to-end-tuning-of"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/repa-e-unlocking-vae-for-end-to-end-tuning-of/image-generation-on-imagenet-256x256" alt="PWC"></a>
30
+ </p>
31
+
32
+ ![](assets/vis-examples.jpg)
33
+
34
+ ## Overview
35
+ We address a fundamental question: ***Can latent diffusion models and their VAE tokenizer be trained end-to-end?*** While training both components jointly with standard diffusion loss is observed to be ineffective β€” often degrading final performance β€” we show that this limitation can be overcome using a simple representation-alignment (REPA) loss. Our proposed method, **REPA-E**, enables stable and effective joint training of both the VAE and the diffusion model.
36
+
37
+ ![](assets/overview.jpg)
38
+
39
+ **REPA-E** significantly accelerates training β€” achieving over **17Γ—** speedup compared to REPA and **45Γ—** over the vanilla training recipe. Interestingly, end-to-end tuning also improves the VAE itself: the resulting **E2E-VAE** provides better latent structure and serves as a **drop-in replacement** for existing VAEs (e.g., SD-VAE), improving convergence and generation quality across diverse LDM architectures. Our method achieves state-of-the-art FID scores on ImageNet 256Γ—256: **1.26** with CFG and **1.83** without CFG.
40
+
41
+ ## News and Updates
42
+ **[2025-04-15]** Initial Release with pre-trained models and codebase.
43
+
44
+ ## Getting Started
45
+ ### 1. Environment Setup
46
+ To set up our environment, please run:
47
+
48
+ ```bash
49
+ git clone https://github.com/REPA-E/REPA-E.git
50
+ cd REPA-E
51
+ conda env create -f environment.yml -y
52
+ conda activate repa-e
53
+ ```
54
+
55
+ ### 2. Prepare the training data
56
+ Download and extract the training split of the [ImageNet-1K](https://www.image-net.org/challenges/LSVRC/2012/index) dataset. Once it's ready, run the following command to preprocess the dataset:
57
+
58
+ ```bash
59
+ python preprocessing.py --imagenet-path /PATH/TO/IMAGENET_TRAIN
60
+ ```
61
+
62
+ Replace `/PATH/TO/IMAGENET_TRAIN` with the actual path to the extracted training images.
63
+
64
+ ### 3. Train the REPA-E model
65
+
66
+ To train the REPA-E model, you first need to download the following pre-trained VAE checkpoints:
67
+ - [πŸ€— **SD-VAE (f8d4)**](https://huggingface.co/REPA-E/sdvae): Derived from the [Stability AI SD-VAE](https://huggingface.co/stabilityai/sd-vae-ft-mse), originally trained on [Open Images](https://storage.googleapis.com/openimages/web/index.html) and fine-tuned on a subset of [LAION-2B](https://laion.ai/blog/laion-5b/).
68
+ - [πŸ€— **IN-VAE (f16d32)**](https://huggingface.co/REPA-E/invae): Trained from scratch on [ImageNet-1K](https://www.image-net.org/) using the [latent-diffusion](https://github.com/CompVis/latent-diffusion) codebase with our custom architecture.
69
+ - [πŸ€— **VA-VAE (f16d32)**](https://huggingface.co/REPA-E/vavae): Taken from [LightningDiT](https://github.com/hustvl/LightningDiT), this VAE is a visual tokenizer aligned with vision foundation models during reconstruction training. It is also trained on [ImageNet-1K](https://www.image-net.org/) for high-quality tokenization in high-dimensional latent spaces.
70
+
71
+ Recommended directory structure:
72
+ ```
73
+ pretrained/
74
+ β”œβ”€β”€ invae/
75
+ β”œβ”€β”€ sdvae/
76
+ └── vavae/
77
+ ```
78
+
79
+ Once you've downloaded the VAE checkpoint, you can launch REPA-E training with:
80
+ ```bash
81
+ accelerate launch train_repae.py \
82
+ --max-train-steps=400000 \
83
+ --report-to="wandb" \
84
+ --allow-tf32 \
85
+ --mixed-precision="fp16" \
86
+ --seed=0 \
87
+ --data-dir="data" \
88
+ --output-dir="exps" \
89
+ --batch-size=256 \
90
+ --path-type="linear" \
91
+ --prediction="v" \
92
+ --weighting="uniform" \
93
+ --model="SiT-XL/2" \
94
+ --checkpointing-steps=50000 \
95
+ --loss-cfg-path="configs/l1_lpips_kl_gan.yaml" \
96
+ --vae="f8d4" \
97
+ --vae-ckpt="pretrained/sdvae/sdvae-f8d4.pt" \
98
+ --disc-pretrained-ckpt="pretrained/sdvae/sdvae-f8d4-discriminator-ckpt.pt" \
99
+ --enc-type="dinov2-vit-b" \
100
+ --proj-coeff=0.5 \
101
+ --encoder-depth=8 \
102
+ --vae-align-proj-coeff=1.5 \
103
+ --bn-momentum=0.1 \
104
+ --exp-name="sit-xl-dinov2-b-enc8-repae-sdvae-0.5-1.5-400k"
105
+ ```
106
+ <details>
107
+ <summary>Click to expand for configuration options</summary>
108
+
109
+ Then this script will automatically create the folder in `exps` to save logs and checkpoints. You can adjust the following options:
110
+
111
+ - `--output-dir`: Directory to save checkpoints and logs
112
+ - `--exp-name`: Experiment name (a subfolder will be created under `output-dir`)
113
+ - `--vae`: Choose between `[f8d4, f16d32]`
114
+ - `--vae-ckpt`: Path to a provided or custom VAE checkpoint
115
+ - `--disc-pretrained-ckpt`: Path to a provided or custom VAE discriminator checkpoint
116
+ - `--models`: Choose from `[SiT-B/2, SiT-L/2, SiT-XL/2, SiT-B/1, SiT-L/1, SiT-XL/1]`. The number indicates the patch size. Select a model compatible with your VAE architecture.
117
+ - `--enc-type`: `[dinov2-vit-b, dinov2-vit-l, dinov2-vit-g, dinov1-vit-b, mocov3-vit-b, mocov3-vit-l, clip-vit-L, jepa-vit-h, mae-vit-l]`
118
+ - `--encoder-depth`: Any integer from 1 up to the full depth of the selected encoder
119
+ - `--proj-coeff`: REPA-E projection coefficient for SiT alignment (float > 0)
120
+ - `--vae-align-proj-coeff`: REPA-E projection coefficient for VAE alignment (float > 0)
121
+ - `--bn-momentum`: Batchnorm layer momentum (float)
122
+
123
+ </details>
124
+
125
+ ### 4. Use REPA-E Tuned VAE (E2E-VAE) for Accelerated Training and Better Generation
126
+ This section shows how to use the REPA-E fine-tuned VAE (E2E-VAE) in latent diffusion training. E2E-VAE acts as a drop-in replacement for the original VAE, enabling significantly accelerated generation performance. You can either download a pre-trained VAE or extract it from a REPA-E checkpoint.
127
+
128
+ **Step 1**: Obtain the fine-tuned VAE from REPA-E checkpoints:
129
+ - **Option 1**: Download pre-trained REPA-E VAEs directly from Hugging Face:
130
+ - [πŸ€— **E2E-SDVAE**](https://huggingface.co/REPA-E/e2e-sdvae)
131
+ - [πŸ€— **E2E-INVAE**](https://huggingface.co/REPA-E/e2e-invae)
132
+ - [πŸ€— **E2E-VAVAE**](https://huggingface.co/REPA-E/e2e-vavae)
133
+
134
+ Recommended directory structure:
135
+ ```
136
+ pretrained/
137
+ β”œβ”€β”€ e2e-sdvae/
138
+ β”œβ”€β”€ e2e-invae/
139
+ └── e2e-vavae/
140
+ ```
141
+ - **Option 2**: Extract the VAE from a full REPA-E checkpoint manually:
142
+ ```bash
143
+ python save_vae_weights.py \
144
+ --repae-ckpt pretrained/sit-repae-vavae/checkpoints/0400000.pt \
145
+ --vae-name e2e-vavae \
146
+ --save-dir exps
147
+ ```
148
+
149
+ **Step 2**: Cache latents to enable fast training:
150
+ ```bash
151
+ accelerate launch --num-machines=1 --num-processes=8 cache_latents.py \
152
+ --vae-arch="f16d32" \
153
+ --vae-ckpt-path="pretrained/e2e-vavae/e2e-vavae-400k.pt" \
154
+ --vae-latents-name="e2e-vavae" \
155
+ --pproc-batch-size=128
156
+ ```
157
+
158
+ **Step 3**: Train the SiT generation model using the cached latents:
159
+
160
+ ```bash
161
+ accelerate launch train_ldm_only.py \
162
+ --max-train-steps=4000000 \
163
+ --report-to="wandb" \
164
+ --allow-tf32 \
165
+ --mixed-precision="fp16" \
166
+ --seed=0 \
167
+ --data-dir="data" \
168
+ --batch-size=256 \
169
+ --path-type="linear" \
170
+ --prediction="v" \
171
+ --weighting="uniform" \
172
+ --model="SiT-XL/1" \
173
+ --checkpointing-steps=50000 \
174
+ --vae="f16d32" \
175
+ --vae-ckpt="pretrained/e2e-vavae/e2e-vavae-400k.pt" \
176
+ --vae-latents-name="e2e-vavae" \
177
+ --learning-rate=1e-4 \
178
+ --enc-type="dinov2-vit-b" \
179
+ --proj-coeff=0.5 \
180
+ --encoder-depth=8 \
181
+ --output-dir="exps" \
182
+ --exp-name="sit-xl-1-dinov2-b-enc8-ldm-only-e2e-vavae-0.5-4m"
183
+ ```
184
+
185
+ For details on the available training options and argument descriptions, refer to [Section 3](#3-train-the-repa-e-model).
186
+
187
+ ### 5. Generate samples and run evaluation
188
+ You can generate samples and save them as `.npz` files using the following script. Simply set the `--exp-path` and `--train-steps` corresponding to your trained model (REPA-E or Traditional LDM Training).
189
+
190
+ ```bash
191
+ torchrun --nnodes=1 --nproc_per_node=8 generate.py \\
192
+ --num-fid-samples 50000 \\
193
+ --path-type linear \\
194
+ --mode sde \\
195
+ --num-steps 250 \\
196
+ --cfg-scale 1.0 \\
197
+ --guidance-high 1.0 \\
198
+ --guidance-low 0.0 \\
199
+ --exp-path pretrained/sit-repae-sdvae \\
200
+ --train-steps 400000
201
+ ```
202
+
203
+ ```bash
204
+ torchrun --nnodes=1 --nproc_per_node=8 generate.py \\
205
+ --num-fid-samples 50000 \\
206
+ --path-type linear \\
207
+ --mode sde \\
208
+ --num-steps 250 \\
209
+ --cfg-scale 1.0 \\
210
+ --guidance-high 1.0 \\
211
+ --guidance-low 0.0 \\
212
+ --exp-path pretrained/sit-ldm-e2e-vavae \\
213
+ --train-steps 4000000
214
+ ```
215
+
216
+ <details>
217
+ <summary>Click to expand for sampling options</summary>
218
+
219
+ You can adjust the following options for sampling:
220
+ - `--path-type linear`: Noise schedule type, choose from `[linear, cosine]`
221
+ - `--mode`: Sampling mode, `[ode, sde]`
222
+ - `--num-steps`: Number of denoising steps
223
+ - `--cfg-scale`: Guidance scale (float β‰₯ 1), setting it to 1 disables classifier-free guidance (CFG)
224
+ - `--guidance-high`: Upper guidance interval (float in [0, 1])
225
+ - `--guidance-low`: Lower guidance interval (float in [0, 1], must be < `--guidance-high`)
226
+ - `--exp-path`: Path to the experiment directory
227
+ - `--train-steps`: Training step of the checkpoint to evaluate
228
+
229
+ </details>
230
+
231
+ You can then use the [ADM evaluation suite](https://github.com/openai/guided-diffusion/tree/main/evaluations) to compute image generation quality metrics, including gFID, sFID, Inception Score (IS), Precision, and Recall.
232
+
233
+ ### Quantitative Results
234
+ Tables below report generation performance using gFID on 50k samples, with and without classifier-free guidance (CFG). We compare models trained end-to-end with **REPA-E** and models using a frozen REPA-E fine-tuned VAE (**E2E-VAE**). Lower is better. All linked checkpoints below are hosted on our [πŸ€— Hugging Face Hub](https://huggingface.co/REPA-E). To reproduce these results, download the respective checkpoints to the `pretrained` folder and run the evaluation script as detailed in [Section 5](#5-generate-samples-and-run-evaluation).
235
+
236
+ #### A. End-to-End Training (REPA-E)
237
+ | Tokenizer | Generation Model | Epochs | gFID-50k ↓ | gFID-50k (CFG) ↓ |
238
+ |:---------|:----------------|:-----:|:----:|:---:|
239
+ | [**SD-VAE<sup>*</sup>**](https://huggingface.co/REPA-E/sdvae) | [**SiT-XL/2**](https://huggingface.co/REPA-E/sit-repae-sdvae) | 80 | 4.07 | 1.67<sup>a</sup> |
240
+ | [**IN-VAE<sup>*</sup>**](https://huggingface.co/REPA-E/invae) | [**SiT-XL/1**](https://huggingface.co/REPA-E/sit-repae-invae) | 80 | 4.09 | 1.61<sup>b</sup> |
241
+ | [**VA-VAE<sup>*</sup>**](https://huggingface.co/REPA-E/vavae) | [**SiT-XL/1**](https://huggingface.co/REPA-E/sit-repae-vavae) | 80 | 4.05 | 1.73<sup>c</sup> |
242
+
243
+ \* The "Tokenizer" column refers to the initial VAE used for joint REPA-E training. The final (jointly optimized) VAE is bundled within the generation model checkpoint.
244
+
245
+ <details>
246
+ <summary>Click to expand for CFG parameters</summary>
247
+ <ul>
248
+ <li><strong>a</strong>: <code>--cfg-scale=2.2</code>, <code>--guidance-low=0.0</code>, <code>--guidance-high=0.65</code></li>
249
+ <li><strong>b</strong>: <code>--cfg-scale=1.8</code>, <code>--guidance-low=0.0</code>, <code>--guidance-high=0.825</code></li>
250
+ <li><strong>c</strong>: <code>--cfg-scale=1.9</code>, <code>--guidance-low=0.0</code>, <code>--guidance-high=0.825</code></li>
251
+ </ul>
252
+ </details>
253
+
254
+ ---
255
+
256
+ #### B. Traditional Latent Diffusion Model Training (Frozen VAE)
257
+ | Tokenizer | Generation Model | Method | Epochs | gFID-50k ↓ | gFID-50k (CFG) ↓ |
258
+ |:------|:---------|:----------------|:-----:|:----:|:---:|
259
+ | SD-VAE | SiT-XL/2 | SiT | 1400 | 8.30 | 2.06 |
260
+ | SD-VAE | SiT-XL/2 | REPA | 800 | 5.90 | 1.42 |
261
+ | VA-VAE | LightningDiT-XL/1 | LightningDiT | 800 | 2.17 | 1.36 |
262
+ | [**E2E-VAVAE (Ours)**](https://huggingface.co/REPA-E/e2e-vavae) | [**SiT-XL/1**](https://huggingface.co/REPA-E/sit-ldm-e2e-vavae) | REPA | 800 | **1.83** | **1.26**<sup>†</sup> |
263
+
264
+ In this setup, the VAE is kept frozen, and only the generator is trained. Models using our E2E-VAE (fine-tuned via REPA-E) consistently outperform baselines like SD-VAE and VA-VAE, achieving state-of-the-art performance when incorporating the REPA alignment objective.
265
+
266
+ <details>
267
+ <summary>Click to expand for CFG parameters</summary>
268
+ <ul>
269
+ <li><strong>†</strong>: <code>--cfg-scale=2.5</code>, <code>--guidance-low=0.0</code>, <code>--guidance-high=0.75</code></li>
270
+ </ul>
271
+ </details>
272
+
273
+ ## Acknowledgement
274
+ This codebase builds upon several excellent open-source projects, including:
275
+ - [1d-tokenizer](https://github.com/bytedance/1d-tokenizer)
276
+ - [edm2](https://github.com/NVlabs/edm2)
277
+ - [LightningDiT](https://github.com/hustvl/LightningDiT)
278
+ - [REPA](https://github.com/sihyun-yu/REPA)
279
+ - [Taming-Transformers](https://github.com/CompVis/taming-transformers)
280
+
281
+ We sincerely thank the authors for making their work publicly available.
282
+
283
+ ## BibTeX
284
+ If you find our work useful, please consider citing:
285
+
286
+ ```bibtex
287
+ @article{leng2025repae,
288
+ title={REPA-E: Unlocking VAE for End-to-End Tuning with Latent Diffusion Transformers},
289
+ author={Xingjian Leng and Jaskirat Singh and Yunzhong Hou and Zhenchang Xing and Saining Xie and Liang Zheng},
290
+ year={2025},
291
+ journal={arXiv preprint arXiv:2504.10483},
292
+ }
293
+ ```