Kaggle AI Mathematical Olympiad - Progress Prize 2 - 9th Place Solution (Fast-Math-R1-14B)

Team

Summary

By applying SFT and GRPO on difficult math problems, we enhanced the performance of DeepSeek-R1-Distill-Qwen-14B and developed Fast-Math-R1-14B, which achieves up to 60% (on average approx. 30%) faster inference while maintaining accuracy.

Technical details can be found in Kaggle Discussion and Github.

Evaluation

DS-R1-Qwen-14B vs Fast-Math-R1-14B (Ours)

AIME 2024 AIME 2025
Model Token budget Pass@1 (avg. 64) Mean output tokens Pass@1 (avg. 64) Mean output tokens
DeepSeek-R1-Distill-Qwen-14B 32000 66.9 11026 49.9 12310
24000 65.7 10784 49.7 11978
16000 61 9708 46.2 10567
12000 53.7 8472 39.9 9008
8000 41.8 6587 31.1 6788
Fast-Math-R1-14B 32000 68 8217 49.6 9663
24000 67.9 8209 49.6 9627
16000 66.7 8017 48.4 9083
12000 61.9 7362 45.2 8048
8000 51.4 5939 36.3 6174

OpenMath-Nemotron-14B vs Fast-OpenMath-Nemotron-14B (Ours)

AIME 2024 AIME 2025
Model Token budget Pass@1 (avg. 64) Mean output tokens Pass@1 (avg. 64) Mean output tokens
OpenMath-Nemotron-14B 32000 76.2 11493 64.5 13414
24000 75.4 11417 63.4 13046
16000 66 10399 54.2 11422
12000 55 9053 40 9609
8000 36 6978 27.2 7083
Fast-OpenMath-Nemotron-14B 32000 70.7 9603 61.4 11424
24000 70.6 9567 60.9 11271
16000 66.6 8954 55.3 10190
12000 59.4 7927 45.6 8752
8000 47.6 6282 33.8 6589

Qwen3-14B vs Fast-Math-Qwen-14B

AIME 2024 AIME 2025
Model Token budget Pass@1 (avg. 64) Mean output tokens Pass@1 (avg. 64) Mean output tokens
Qwen3-14B 32000 79.3 13669 69.5 16481
24000 75.9 13168 65.6 15235
16000 64.5 11351 50.4 12522
12000 49.7 9746 36.3 10353
8000 28.4 7374 19.5 7485
Fast-Math-Qwen3-14B 32000 77.6 9740 66.6 12281
24000 76.5 9634 65.3 11847
16000 72.6 8793 60.1 10195
12000 65.1 7775 49.4 8733
8000 50.7 6260 36 6618

Dataset

Inference

vLLM

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer


model_path = 'RabotniKuma/Fast-Math-R1-14B'
vllm_engine = LLM(
    model=model_path,
    max_model_len=8192,
    gpu_memory_utilization=0.9,
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)


sampling_params = SamplingParams(
    temperature=1.0,
    top_p=0.90,
    min_p=0.05,
    max_tokens=8192,
    stop='</think>', # For even faster inference, applying early stopping at the </think> tag and extracting the final boxed content is recommended.
)
messages = [
    {
        'role': 'user', 
        'content': (
            'Solve the problem, and put the answer in \boxed{{}}. '
            'Sarah is twice as old as her youngest brother. If the difference between their ages is 15 years. How old is her youngest brother?'
        )
    }
]
messages = tokenizer.apply_chat_template(
    conversation=messages,
    tokenize=False,
    add_generation_prompt=True
)
response = vllm_engine.generate(messages, sampling_params=sampling_params)
Downloads last month
13
Safetensors
Model size
14.8B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RabotniKuma/Fast-Math-R1-14B

Finetuned
(59)
this model
Quantizations
1 model

Collection including RabotniKuma/Fast-Math-R1-14B