ner_model
This model is a fine-tuned version of hfl/chinese-bert-wwm-ext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0311
- Precision: 1.0000
- Recall: 1.0000
- F1: 1.0000
- Accuracy: 1.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.031 | 1.0 | 15055 | 0.0317 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
0.031 | 2.0 | 30110 | 0.0313 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
0.031 | 3.0 | 45165 | 0.0312 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
0.031 | 4.0 | 60220 | 0.0311 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
0.031 | 5.0 | 75275 | 0.0311 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for RachelCX/ner_model
Base model
hfl/chinese-bert-wwm-ext