ner_model_output / README.md
RachelCX's picture
RachelCX/ner_for_GJ
7117f16 verified
metadata
library_name: transformers
license: apache-2.0
base_model: hfl/chinese-bert-wwm-ext
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_model_output
    results: []

ner_model_output

This model is a fine-tuned version of hfl/chinese-bert-wwm-ext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3016
  • Precision: 0.9999
  • Recall: 0.9999
  • F1: 0.9999
  • Accuracy: 1.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3032 1.0 6200 0.3026 0.9995 0.9996 0.9995 0.9997
0.3031 2.0 12400 0.3018 0.9999 0.9999 0.9999 1.0000
0.3025 3.0 18600 0.3017 0.9999 0.9999 0.9999 1.0000
0.3024 4.0 24800 0.3017 0.9999 0.9999 0.9999 1.0000
0.3019 5.0 31000 0.3016 0.9999 0.9999 0.9999 1.0000
0.3034 6.0 37200 0.3016 0.9999 0.9999 0.9999 1.0000

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1