|  | --- | 
					
						
						|  | library_name: transformers | 
					
						
						|  | license: cc-by-nc-sa-4.0 | 
					
						
						|  | base_model: microsoft/layoutlmv3-base | 
					
						
						|  | tags: | 
					
						
						|  | - generated_from_trainer | 
					
						
						|  | metrics: | 
					
						
						|  | - precision | 
					
						
						|  | - recall | 
					
						
						|  | - f1 | 
					
						
						|  | - accuracy | 
					
						
						|  | model-index: | 
					
						
						|  | - name: layoutlmv3-finetuned-invoice | 
					
						
						|  | results: [] | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | <!-- This model card has been generated automatically according to the information the Trainer had access to. You | 
					
						
						|  | should probably proofread and complete it, then remove this comment. --> | 
					
						
						|  |  | 
					
						
						|  | # layoutlmv3-finetuned-invoice | 
					
						
						|  |  | 
					
						
						|  | This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. | 
					
						
						|  | It achieves the following results on the evaluation set: | 
					
						
						|  | - Loss: 0.0558 | 
					
						
						|  | - Precision: 0.9435 | 
					
						
						|  | - Recall: 0.9612 | 
					
						
						|  | - F1: 0.9523 | 
					
						
						|  | - Accuracy: 0.9858 | 
					
						
						|  |  | 
					
						
						|  | ## Model description | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Intended uses & limitations | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training and evaluation data | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training procedure | 
					
						
						|  |  | 
					
						
						|  | ### Training hyperparameters | 
					
						
						|  |  | 
					
						
						|  | The following hyperparameters were used during training: | 
					
						
						|  | - learning_rate: 1e-05 | 
					
						
						|  | - train_batch_size: 2 | 
					
						
						|  | - eval_batch_size: 2 | 
					
						
						|  | - seed: 42 | 
					
						
						|  | - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments | 
					
						
						|  | - lr_scheduler_type: linear | 
					
						
						|  | - training_steps: 1000 | 
					
						
						|  |  | 
					
						
						|  | ### Training results | 
					
						
						|  |  | 
					
						
						|  | | Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy | | 
					
						
						|  | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 
					
						
						|  | | No log        | 0.3195 | 100  | 0.0961          | 0.9121    | 0.9134 | 0.9128 | 0.9752   | | 
					
						
						|  | | No log        | 0.6390 | 200  | 0.0772          | 0.9120    | 0.9396 | 0.9256 | 0.9780   | | 
					
						
						|  | | No log        | 0.9585 | 300  | 0.0707          | 0.9272    | 0.9509 | 0.9389 | 0.9822   | | 
					
						
						|  | | No log        | 1.2780 | 400  | 0.0638          | 0.9202    | 0.9602 | 0.9398 | 0.9819   | | 
					
						
						|  | | 0.1131        | 1.5974 | 500  | 0.0631          | 0.9270    | 0.9582 | 0.9423 | 0.9829   | | 
					
						
						|  | | 0.1131        | 1.9169 | 600  | 0.0561          | 0.9331    | 0.9615 | 0.9471 | 0.9843   | | 
					
						
						|  | | 0.1131        | 2.2364 | 700  | 0.0651          | 0.9141    | 0.9720 | 0.9421 | 0.9824   | | 
					
						
						|  | | 0.1131        | 2.5559 | 800  | 0.0537          | 0.9515    | 0.9556 | 0.9535 | 0.9862   | | 
					
						
						|  | | 0.1131        | 2.8754 | 900  | 0.0556          | 0.9467    | 0.9582 | 0.9524 | 0.9860   | | 
					
						
						|  | | 0.0379        | 3.1949 | 1000 | 0.0558          | 0.9435    | 0.9612 | 0.9523 | 0.9858   | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Framework versions | 
					
						
						|  |  | 
					
						
						|  | - Transformers 4.46.0.dev0 | 
					
						
						|  | - Pytorch 2.4.1+cu121 | 
					
						
						|  | - Datasets 3.0.1 | 
					
						
						|  | - Tokenizers 0.20.0 | 
					
						
						|  |  |