metadata
license: apache-2.0
datasets:
- Anthropic/hh-rlhf
language:
- en
pipeline_tag: text-generation
GPT-2 Medium Fine-Tuned on Anthropic-hh Dataset
This repository houses a GPT-2 Medium model fine-tuned on the Anthropic-hh dataset. The fine-tuning process involved masking Human's utterances, with the loss computed exclusively on the Assistant's responses.
Model Information
- Base Model: GPT-2 Medium
- Training Data: Anthropic-hh dataset
- Fine-Tuning Approach: Supervised fine-tuning with a focus on Assistant's responses.
How to Use
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# Load tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained("RaushanTurganbay/GPT2_instruct_tuned")
model = GPT2LMHeadModel.from_pretrained("RaushanTurganbay/GPT2_instruct_tuned")
# Generate responses
prompt = "Your input prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=150, num_return_sequences=1)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))