Update README.md
#2
by
Zeyu077
- opened
README.md
CHANGED
@@ -1,6 +1,63 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Citation Information
|
5 |
If you find this work useful, we would be grateful if you consider citing the following papers:
|
6 |
```bibtex
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
## Inference
|
5 |
+
Our models are established on top of the Qwen2.5-VL family. So we include a simple use case here, and refer the readers to [the standard inference procedure of Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL).
|
6 |
+
|
7 |
+
|
8 |
+
```python
|
9 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
10 |
+
from qwen_vl_utils import process_vision_info
|
11 |
+
|
12 |
+
# default: Load the model on the available device(s)
|
13 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
14 |
+
"Reallm-Labs/Infi-MMR-3B", torch_dtype="auto", device_map="auto"
|
15 |
+
)
|
16 |
+
min_pixels = 256*28*28
|
17 |
+
max_pixels = 1280*28*28
|
18 |
+
processor = AutoProcessor.from_pretrained("Reallm-Labs/Infi-MMR-3B", min_pixels=min_pixels, max_pixels=max_pixels)
|
19 |
+
|
20 |
+
messages = [
|
21 |
+
{
|
22 |
+
"role": "user",
|
23 |
+
"content": [
|
24 |
+
{
|
25 |
+
"type": "image",
|
26 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
27 |
+
},
|
28 |
+
{"type": "text", "text": "Describe this image."},
|
29 |
+
],
|
30 |
+
}
|
31 |
+
]
|
32 |
+
|
33 |
+
# Preparation for inference
|
34 |
+
text = processor.apply_chat_template(
|
35 |
+
messages, tokenize=False, add_generation_prompt=True
|
36 |
+
)
|
37 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
38 |
+
inputs = processor(
|
39 |
+
text=[text],
|
40 |
+
images=image_inputs,
|
41 |
+
videos=video_inputs,
|
42 |
+
padding=True,
|
43 |
+
return_tensors="pt",
|
44 |
+
)
|
45 |
+
inputs = inputs.to(model.device)
|
46 |
+
|
47 |
+
# Inference: Generation of the output
|
48 |
+
generated_ids = model.generate(**inputs, max_new_tokens=4096)
|
49 |
+
generated_ids_trimmed = [
|
50 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
51 |
+
]
|
52 |
+
output_text = processor.batch_decode(
|
53 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
54 |
+
)
|
55 |
+
print(output_text)
|
56 |
+
|
57 |
+
```
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
## Citation Information
|
62 |
If you find this work useful, we would be grateful if you consider citing the following papers:
|
63 |
```bibtex
|