Update README.md
#1
by
jennyyyi
- opened
README.md
CHANGED
@@ -32,7 +32,14 @@ base_model:
|
|
32 |
pipeline_tag: image-text-to-text
|
33 |
---
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) **adds state-of-the-art vision understanding** and enhances **long context capabilities up to 128k tokens** without compromising text performance.
|
38 |
With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.
|
@@ -53,6 +60,163 @@ For enterprises requiring specialized capabilities (increased context, specific
|
|
53 |
|
54 |
Learn more about Mistral Small 3.1 in our [blog post](https://mistral.ai/news/mistral-small-3-1/).
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
## Key Features
|
57 |
- **Vision:** Vision capabilities enable the model to analyze images and provide insights based on visual content in addition to text.
|
58 |
- **Multilingual:** Supports dozens of languages, including English, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Malay, Nepali, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Swedish, Turkish, Ukrainian, Vietnamese, Arabic, Bengali, Chinese, Farsi.
|
@@ -178,6 +342,7 @@ python -c "import mistral_common; print(mistral_common.__version__)"
|
|
178 |
|
179 |
You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).
|
180 |
|
|
|
181 |
#### Server
|
182 |
|
183 |
We recommand that you use Mistral-Small-3.1-24B-Instruct-2503 in a server/client setting.
|
|
|
32 |
pipeline_tag: image-text-to-text
|
33 |
---
|
34 |
|
35 |
+
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
|
36 |
+
Mistral-Small-3.1-24B-Instruct-2503
|
37 |
+
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
|
38 |
+
</h1>
|
39 |
+
|
40 |
+
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
|
41 |
+
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
|
42 |
+
</a>
|
43 |
|
44 |
Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) **adds state-of-the-art vision understanding** and enhances **long context capabilities up to 128k tokens** without compromising text performance.
|
45 |
With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.
|
|
|
60 |
|
61 |
Learn more about Mistral Small 3.1 in our [blog post](https://mistral.ai/news/mistral-small-3-1/).
|
62 |
|
63 |
+
<details>
|
64 |
+
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
|
65 |
+
|
66 |
+
```bash
|
67 |
+
$ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
|
68 |
+
--ipc=host \
|
69 |
+
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
70 |
+
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
|
71 |
+
--name=vllm \
|
72 |
+
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
|
73 |
+
vllm serve \
|
74 |
+
--tensor-parallel-size 8 \
|
75 |
+
--max-model-len 32768 \
|
76 |
+
--enforce-eager --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503
|
77 |
+
```
|
78 |
+
|
79 |
+
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
|
80 |
+
</details>
|
81 |
+
|
82 |
+
<details>
|
83 |
+
<summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary>
|
84 |
+
|
85 |
+
```bash
|
86 |
+
# Download model from Red Hat Registry via docker
|
87 |
+
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
|
88 |
+
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-3-1-24b-instruct-2503:1.5
|
89 |
+
```
|
90 |
+
|
91 |
+
```bash
|
92 |
+
# Serve model via ilab
|
93 |
+
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503
|
94 |
+
|
95 |
+
# Chat with model
|
96 |
+
ilab model chat --model ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503
|
97 |
+
```
|
98 |
+
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
|
99 |
+
</details>
|
100 |
+
|
101 |
+
<details>
|
102 |
+
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
|
103 |
+
|
104 |
+
```python
|
105 |
+
# Setting up vllm server with ServingRuntime
|
106 |
+
# Save as: vllm-servingruntime.yaml
|
107 |
+
apiVersion: serving.kserve.io/v1alpha1
|
108 |
+
kind: ServingRuntime
|
109 |
+
metadata:
|
110 |
+
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
|
111 |
+
annotations:
|
112 |
+
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
|
113 |
+
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
|
114 |
+
labels:
|
115 |
+
opendatahub.io/dashboard: 'true'
|
116 |
+
spec:
|
117 |
+
annotations:
|
118 |
+
prometheus.io/port: '8080'
|
119 |
+
prometheus.io/path: '/metrics'
|
120 |
+
multiModel: false
|
121 |
+
supportedModelFormats:
|
122 |
+
- autoSelect: true
|
123 |
+
name: vLLM
|
124 |
+
containers:
|
125 |
+
- name: kserve-container
|
126 |
+
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
|
127 |
+
command:
|
128 |
+
- python
|
129 |
+
- -m
|
130 |
+
- vllm.entrypoints.openai.api_server
|
131 |
+
args:
|
132 |
+
- "--port=8080"
|
133 |
+
- "--model=/mnt/models"
|
134 |
+
- "--served-model-name={{.Name}}"
|
135 |
+
env:
|
136 |
+
- name: HF_HOME
|
137 |
+
value: /tmp/hf_home
|
138 |
+
ports:
|
139 |
+
- containerPort: 8080
|
140 |
+
protocol: TCP
|
141 |
+
```
|
142 |
+
|
143 |
+
```python
|
144 |
+
# Attach model to vllm server. This is an NVIDIA template
|
145 |
+
# Save as: inferenceservice.yaml
|
146 |
+
apiVersion: serving.kserve.io/v1beta1
|
147 |
+
kind: InferenceService
|
148 |
+
metadata:
|
149 |
+
annotations:
|
150 |
+
openshift.io/display-name: mistral-small-3-1-24b-instruct-2503 # OPTIONAL CHANGE
|
151 |
+
serving.kserve.io/deploymentMode: RawDeployment
|
152 |
+
name: mistral-small-3-1-24b-instruct-2503 # specify model name. This value will be used to invoke the model in the payload
|
153 |
+
labels:
|
154 |
+
opendatahub.io/dashboard: 'true'
|
155 |
+
spec:
|
156 |
+
predictor:
|
157 |
+
maxReplicas: 1
|
158 |
+
minReplicas: 1
|
159 |
+
model:
|
160 |
+
modelFormat:
|
161 |
+
name: vLLM
|
162 |
+
name: ''
|
163 |
+
resources:
|
164 |
+
limits:
|
165 |
+
cpu: '2' # this is model specific
|
166 |
+
memory: 8Gi # this is model specific
|
167 |
+
nvidia.com/gpu: '1' # this is accelerator specific
|
168 |
+
requests: # same comment for this block
|
169 |
+
cpu: '1'
|
170 |
+
memory: 4Gi
|
171 |
+
nvidia.com/gpu: '1'
|
172 |
+
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
|
173 |
+
storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-3-1-24b-instruct-2503:1.5
|
174 |
+
tolerations:
|
175 |
+
- effect: NoSchedule
|
176 |
+
key: nvidia.com/gpu
|
177 |
+
operator: Exists
|
178 |
+
```
|
179 |
+
|
180 |
+
```bash
|
181 |
+
# make sure first to be in the project where you want to deploy the model
|
182 |
+
# oc project <project-name>
|
183 |
+
|
184 |
+
# apply both resources to run model
|
185 |
+
|
186 |
+
# Apply the ServingRuntime
|
187 |
+
oc apply -f vllm-servingruntime.yaml
|
188 |
+
|
189 |
+
# Apply the InferenceService
|
190 |
+
oc apply -f qwen-inferenceservice.yaml
|
191 |
+
```
|
192 |
+
|
193 |
+
```python
|
194 |
+
# Replace <inference-service-name> and <cluster-ingress-domain> below:
|
195 |
+
# - Run `oc get inferenceservice` to find your URL if unsure.
|
196 |
+
|
197 |
+
# Call the server using curl:
|
198 |
+
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
|
199 |
+
-H "Content-Type: application/json" \
|
200 |
+
-d '{
|
201 |
+
"model": "mistral-small-3-1-24b-instruct-2503",
|
202 |
+
"stream": true,
|
203 |
+
"stream_options": {
|
204 |
+
"include_usage": true
|
205 |
+
},
|
206 |
+
"max_tokens": 1,
|
207 |
+
"messages": [
|
208 |
+
{
|
209 |
+
"role": "user",
|
210 |
+
"content": "How can a bee fly when its wings are so small?"
|
211 |
+
}
|
212 |
+
]
|
213 |
+
}'
|
214 |
+
|
215 |
+
```
|
216 |
+
|
217 |
+
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
|
218 |
+
</details>
|
219 |
+
|
220 |
## Key Features
|
221 |
- **Vision:** Vision capabilities enable the model to analyze images and provide insights based on visual content in addition to text.
|
222 |
- **Multilingual:** Supports dozens of languages, including English, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Malay, Nepali, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Swedish, Turkish, Ukrainian, Vietnamese, Arabic, Bengali, Chinese, Farsi.
|
|
|
342 |
|
343 |
You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).
|
344 |
|
345 |
+
|
346 |
#### Server
|
347 |
|
348 |
We recommand that you use Mistral-Small-3.1-24B-Instruct-2503 in a server/client setting.
|