Qwen3-32B-NVFP4

Model Overview

  • Model Architecture: Qwen/Qwen3-32B
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP4
    • Activation quantization: FP4
  • Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
  • Release Date: 6/25/2025
  • Version: 1.0
  • Model Developers: RedHatAI

This model is a quantized version of Qwen/Qwen3-32B. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.

Model Optimizations

This model was obtained by quantizing the weights and activations of Qwen/Qwen3-32B to FP4 data type, ready for inference with vLLM>=0.9.1 This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.

Only the weights and activations of the linear operators within transformers blocks are quantized using LLM Compressor.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Qwen3-32B-NVFP4"
number_gpus = 2

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created by applying LLM Compressor with calibration samples from UltraChat, as presented in the code snipet below.

from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation

MODEL_ID = "Qwen/Qwen3-32B"

# Load model.
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"

# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)

def preprocess(example):
    return {
        "text": tokenizer.apply_chat_template(
            example["messages"],
            tokenize=False,
        )
    }

ds = ds.map(preprocess)

# Tokenize inputs.
def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
        add_special_tokens=False,
    )

ds = ds.map(tokenize, remove_columns=ds.column_names)

# Configure the quantization algorithm and scheme.
# In this case, we:
#   * quantize the weights to fp4 with per group 16 via ptq
#   * calibrate a global_scale for activations, which will be used to
#       quantize activations to fp4 on the fly
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4", ignore=["lm_head"])

# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"

# Apply quantization.
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    output_dir=SAVE_DIR,
)

print("\n\n")
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")

model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)

Evaluation

This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using lm-evaluation-harness.

Accuracy

Category Metric Qwen/Qwen3-32B RedHatAI/Qwen3-32B-NVFP4 (this model) Recovery (%)
OpenLLM V1 mmlu
MMLU
ARC Challenge (0-shot)
GSM8K (8-shot, strict-match)
Hellaswag (10-shot)
Winogrande (5-shot)
TruthfulQA (0-shot, mc2)
Average %
OpenLLM V2 MMLU-Pro (5-shot)
IFEval (0-shot)
BBH (3-shot)
Math-|v|-5 (4-shot)
GPQA (0-shot)
MuSR (0-shot)
Average %
Coding HumanEval pass@1
HumanEval_64 pass@2

Reproduction

The results were obtained using the following commands:

OpenLLM v1

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks openllm \
  --batch_size auto

OpenLLM v2

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks leaderboard \
  --batch_size auto

HumanEval and HumanEval_64

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks humaneval_instruct \
  --batch_size auto


lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks humaneval_64_instruct \
  --batch_size auto
Downloads last month
109
Safetensors
Model size
19.1B params
Tensor type
BF16
F32
F8_E4M3
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for RedHatAI/Qwen3-32B-NVFP4

Base model

Qwen/Qwen3-32B
Quantized
(98)
this model