Update README.md
Browse files
README.md
CHANGED
|
@@ -78,6 +78,8 @@ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://do
|
|
| 78 |
|
| 79 |
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.
|
| 80 |
|
|
|
|
|
|
|
| 81 |
```python
|
| 82 |
from datasets import load_dataset
|
| 83 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
@@ -158,10 +160,11 @@ model.save_pretrained(SAVE_DIR, save_compressed=True)
|
|
| 158 |
tokenizer.save_pretrained(SAVE_DIR)
|
| 159 |
|
| 160 |
```
|
|
|
|
| 161 |
|
| 162 |
## Evaluation
|
| 163 |
|
| 164 |
-
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2
|
| 165 |
|
| 166 |
### Accuracy
|
| 167 |
|
|
@@ -176,114 +179,126 @@ This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, an
|
|
| 176 |
</tr>
|
| 177 |
</thead>
|
| 178 |
<tbody>
|
|
|
|
| 179 |
<tr>
|
| 180 |
<td rowspan="7"><b>OpenLLM V1</b></td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
<td>mmlu</td>
|
| 182 |
-
<td
|
| 183 |
-
<td
|
| 184 |
-
<td
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
</tr>
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
<td>GSM8K (8-shot, strict-match)</td>
|
| 200 |
-
<td></td>
|
| 201 |
-
<td></td>
|
| 202 |
-
<td></td>
|
| 203 |
-
</tr>
|
| 204 |
-
<tr>
|
| 205 |
-
<td>Hellaswag (10-shot)</td>
|
| 206 |
-
<td></td>
|
| 207 |
-
<td></td>
|
| 208 |
-
<td></td>
|
| 209 |
-
</tr>
|
| 210 |
-
<tr>
|
| 211 |
-
<td>Winogrande (5-shot)</td>
|
| 212 |
-
<td></td>
|
| 213 |
-
<td></td>
|
| 214 |
-
<td></td>
|
| 215 |
-
</tr>
|
| 216 |
-
<tr>
|
| 217 |
-
<td>TruthfulQA (0-shot, mc2)</td>
|
| 218 |
-
<td></td>
|
| 219 |
-
<td></td>
|
| 220 |
-
<td></td>
|
| 221 |
-
</tr>
|
| 222 |
-
<tr>
|
| 223 |
-
<td><b>Average</b></td>
|
| 224 |
-
<td><b></b></td>
|
| 225 |
-
<td><b></b></td>
|
| 226 |
-
<td><b>%</b></td>
|
| 227 |
-
</tr>
|
| 228 |
-
<tr>
|
| 229 |
-
<td rowspan="7"><b>OpenLLM V2</b></td>
|
| 230 |
-
<td>MMLU-Pro (5-shot)</td>
|
| 231 |
-
<td></td>
|
| 232 |
-
<td></td>
|
| 233 |
-
<td></td>
|
| 234 |
-
</tr>
|
| 235 |
-
<tr>
|
| 236 |
-
<td>IFEval (0-shot)</td>
|
| 237 |
-
<td></td>
|
| 238 |
-
<td></td>
|
| 239 |
-
<td></td>
|
| 240 |
-
</tr>
|
| 241 |
-
<tr>
|
| 242 |
-
<td>BBH (3-shot)</td>
|
| 243 |
-
<td></td>
|
| 244 |
-
<td></td>
|
| 245 |
-
<td></td>
|
| 246 |
-
</tr>
|
| 247 |
-
<tr>
|
| 248 |
-
<td>Math-|v|-5 (4-shot)</td>
|
| 249 |
-
<td></td>
|
| 250 |
-
<td></td>
|
| 251 |
-
<td></td>
|
| 252 |
-
</tr>
|
| 253 |
-
<tr>
|
| 254 |
-
<td>GPQA (0-shot)</td>
|
| 255 |
-
<td></td>
|
| 256 |
-
<td></td>
|
| 257 |
-
<td></td>
|
| 258 |
-
</tr>
|
| 259 |
-
<tr>
|
| 260 |
-
<td>MuSR (0-shot)</td>
|
| 261 |
-
<td></td>
|
| 262 |
-
<td></td>
|
| 263 |
-
<td></td>
|
| 264 |
-
</tr>
|
| 265 |
-
<tr>
|
| 266 |
-
<td><b>Average</b></td>
|
| 267 |
-
<td><b></b></td>
|
| 268 |
-
<td><b></b></td>
|
| 269 |
-
<td><b>%</b></td>
|
| 270 |
-
</tr>
|
| 271 |
-
|
| 272 |
-
<tr>
|
| 273 |
-
<td><b>Coding</b></td>
|
| 274 |
-
<td>HumanEval pass@1</td>
|
| 275 |
-
<td></td>
|
| 276 |
-
<td></td>
|
| 277 |
-
<td></td>
|
| 278 |
-
</tr>
|
| 279 |
-
<tr>
|
| 280 |
-
<td></td>
|
| 281 |
-
<td>HumanEval_64 pass@2</td>
|
| 282 |
-
<td></td>
|
| 283 |
-
<td></td>
|
| 284 |
-
<td></td>
|
| 285 |
-
</tr>
|
| 286 |
-
</tbody>
|
| 287 |
</table>
|
| 288 |
|
| 289 |
|
|
@@ -291,6 +306,8 @@ This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, an
|
|
| 291 |
|
| 292 |
The results were obtained using the following commands:
|
| 293 |
|
|
|
|
|
|
|
| 294 |
#### OpenLLM v1
|
| 295 |
```
|
| 296 |
lm_eval \
|
|
@@ -314,22 +331,42 @@ lm_eval \
|
|
| 314 |
--batch_size auto
|
| 315 |
```
|
| 316 |
|
| 317 |
-
####
|
| 318 |
```
|
| 319 |
lm_eval \
|
| 320 |
--model vllm \
|
| 321 |
--model_args pretrained="RedHatAI/Qwen3-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
| 322 |
--apply_chat_template \
|
| 323 |
--fewshot_as_multiturn \
|
| 324 |
-
--tasks
|
| 325 |
--batch_size auto
|
|
|
|
| 326 |
|
|
|
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.
|
| 80 |
|
| 81 |
+
<details>
|
| 82 |
+
|
| 83 |
```python
|
| 84 |
from datasets import load_dataset
|
| 85 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 160 |
tokenizer.save_pretrained(SAVE_DIR)
|
| 161 |
|
| 162 |
```
|
| 163 |
+
</details>
|
| 164 |
|
| 165 |
## Evaluation
|
| 166 |
|
| 167 |
+
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2 and HumanEval_64 benchmarks using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). The Reasoning evals were done using [ligheval](https://github.com/neuralmagic/lighteval).
|
| 168 |
|
| 169 |
### Accuracy
|
| 170 |
|
|
|
|
| 179 |
</tr>
|
| 180 |
</thead>
|
| 181 |
<tbody>
|
| 182 |
+
<!-- OpenLLM V1 (Core) -->
|
| 183 |
<tr>
|
| 184 |
<td rowspan="7"><b>OpenLLM V1</b></td>
|
| 185 |
+
<td>arc_challenge</td>
|
| 186 |
+
<td>70.65</td>
|
| 187 |
+
<td>70.22</td>
|
| 188 |
+
<td>99.39</td>
|
| 189 |
+
</tr>
|
| 190 |
+
<tr>
|
| 191 |
+
<td>gsm8k</td>
|
| 192 |
+
<td>74.15</td>
|
| 193 |
+
<td>74.68</td>
|
| 194 |
+
<td>100.71</td>
|
| 195 |
+
</tr>
|
| 196 |
+
<tr>
|
| 197 |
+
<td>hellaswag</td>
|
| 198 |
+
<td>84.00</td>
|
| 199 |
+
<td>83.33</td>
|
| 200 |
+
<td>99.20</td>
|
| 201 |
+
</tr>
|
| 202 |
+
<tr>
|
| 203 |
<td>mmlu</td>
|
| 204 |
+
<td>81.84</td>
|
| 205 |
+
<td>81.23</td>
|
| 206 |
+
<td>99.25</td>
|
| 207 |
+
</tr>
|
| 208 |
+
<tr>
|
| 209 |
+
<td>truthfulqa_mc2</td>
|
| 210 |
+
<td>59.36</td>
|
| 211 |
+
<td>58.92</td>
|
| 212 |
+
<td>99.26</td>
|
| 213 |
+
</tr>
|
| 214 |
+
<tr>
|
| 215 |
+
<td>winogrande</td>
|
| 216 |
+
<td>75.93</td>
|
| 217 |
+
<td>76.80</td>
|
| 218 |
+
<td>101.15</td>
|
| 219 |
+
</tr>
|
| 220 |
+
<tr>
|
| 221 |
+
<td><b>Average</b></td>
|
| 222 |
+
<td><b>74.32</b></td>
|
| 223 |
+
<td><b>74.20</b></td>
|
| 224 |
+
<td><b>99.83</b></td>
|
| 225 |
+
</tr>
|
| 226 |
+
<tr>
|
| 227 |
+
<td rowspan="7"><b>OpenLLM V2</b></td>
|
| 228 |
+
<td>BBH (3-shot)</td>
|
| 229 |
+
<td>62.35</td>
|
| 230 |
+
<td>60.72</td>
|
| 231 |
+
<td>97.39</td>
|
| 232 |
+
</tr>
|
| 233 |
+
<tr>
|
| 234 |
+
<td>MMLU-Pro (5-shot)</td>
|
| 235 |
+
<td>54.39</td>
|
| 236 |
+
<td>51.13</td>
|
| 237 |
+
<td>94.01</td>
|
| 238 |
+
</tr>
|
| 239 |
+
<tr>
|
| 240 |
+
<td>MuSR (0-shot)</td>
|
| 241 |
+
<td>39.29</td>
|
| 242 |
+
<td>41.01</td>
|
| 243 |
+
<td>104.38</td>
|
| 244 |
+
</tr>
|
| 245 |
+
<tr>
|
| 246 |
+
<td>IFEval (0-shot)</td>
|
| 247 |
+
<td>88.97</td>
|
| 248 |
+
<td>87.29</td>
|
| 249 |
+
<td>98.11</td>
|
| 250 |
+
</tr>
|
| 251 |
+
<tr>
|
| 252 |
+
<td>GPQA (0-shot)</td>
|
| 253 |
+
<td>30.12</td>
|
| 254 |
+
<td>30.29</td>
|
| 255 |
+
<td>100.56</td>
|
| 256 |
+
</tr>
|
| 257 |
+
<tr>
|
| 258 |
+
<td>Math-|v|-5 (4-shot)</td>
|
| 259 |
+
<td>58.99</td>
|
| 260 |
+
<td>56.27</td>
|
| 261 |
+
<td>95.39</td>
|
| 262 |
+
</tr>
|
| 263 |
+
<tr>
|
| 264 |
+
<td><b>Average</b></td>
|
| 265 |
+
<td><b>55.69</b></td>
|
| 266 |
+
<td><b>54.45</b></td>
|
| 267 |
+
<td><b>97.79</b></td>
|
| 268 |
+
</tr>
|
| 269 |
+
<tr>
|
| 270 |
+
<td><b>Coding</b></td>
|
| 271 |
+
<td>HumanEval_64 pass@2</td>
|
| 272 |
+
<td>90.14</td>
|
| 273 |
+
<td>90.40</td>
|
| 274 |
+
<td>100.29</td>
|
| 275 |
+
</tr>
|
| 276 |
+
<tr>
|
| 277 |
+
<td rowspan="4"><b>Reasoning</b></td>
|
| 278 |
+
<td>AIME24 (0-shot)</td>
|
| 279 |
+
<td>75.86</td>
|
| 280 |
+
<td>68.97</td>
|
| 281 |
+
<td>90.93</td>
|
| 282 |
+
</tr>
|
| 283 |
+
<tr>
|
| 284 |
+
<td>AIME25 (0-shot)</td>
|
| 285 |
+
<td>72.41</td>
|
| 286 |
+
<td>65.52</td>
|
| 287 |
+
<td>90.52</td>
|
| 288 |
</tr>
|
| 289 |
+
<tr>
|
| 290 |
+
<td>GPQA (Diamond, 0-shot)</td>
|
| 291 |
+
<td>62.94</td>
|
| 292 |
+
<td>64.47</td>
|
| 293 |
+
<td>102.43</td>
|
| 294 |
+
</tr>
|
| 295 |
+
<tr>
|
| 296 |
+
<td><b>Average</b></td>
|
| 297 |
+
<td><b>70.40</b></td>
|
| 298 |
+
<td><b>66.32</b></td>
|
| 299 |
+
<td><b>94.21</b></td>
|
| 300 |
+
</tr>
|
| 301 |
+
</tbody>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
</table>
|
| 303 |
|
| 304 |
|
|
|
|
| 306 |
|
| 307 |
The results were obtained using the following commands:
|
| 308 |
|
| 309 |
+
<details>
|
| 310 |
+
|
| 311 |
#### OpenLLM v1
|
| 312 |
```
|
| 313 |
lm_eval \
|
|
|
|
| 331 |
--batch_size auto
|
| 332 |
```
|
| 333 |
|
| 334 |
+
#### HumanEval_64
|
| 335 |
```
|
| 336 |
lm_eval \
|
| 337 |
--model vllm \
|
| 338 |
--model_args pretrained="RedHatAI/Qwen3-32B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
| 339 |
--apply_chat_template \
|
| 340 |
--fewshot_as_multiturn \
|
| 341 |
+
--tasks humaneval_64_instruct \
|
| 342 |
--batch_size auto
|
| 343 |
+
```
|
| 344 |
|
| 345 |
+
#### LightEval
|
| 346 |
|
| 347 |
+
```
|
| 348 |
+
# --- model_args.yaml ---
|
| 349 |
+
cat > model_args.yaml <<'YAML'
|
| 350 |
+
model_parameters:
|
| 351 |
+
model_name: "RedHatAI/Qwen3-8B-NVFP4"
|
| 352 |
+
dtype: auto
|
| 353 |
+
gpu_memory_utilization: 0.9
|
| 354 |
+
tensor_parallel_size: 2
|
| 355 |
+
max_model_length: 40960
|
| 356 |
+
generation_parameters:
|
| 357 |
+
seed: 42
|
| 358 |
+
temperature: 0.6
|
| 359 |
+
top_k: 20
|
| 360 |
+
top_p: 0.95
|
| 361 |
+
min_p: 0.0
|
| 362 |
+
max_new_tokens: 32768
|
| 363 |
+
YAML
|
| 364 |
+
|
| 365 |
+
lighteval vllm model_args.yaml \
|
| 366 |
+
"lighteval|aime24|0,lighteval|aime25|0,lighteval|gpqa:diamond|0" \
|
| 367 |
+
--max-samples -1 \
|
| 368 |
+
--output-dir out_dir
|
| 369 |
+
|
| 370 |
+
```
|
| 371 |
+
|
| 372 |
+
</details>
|