Model Overview

  • Model Architecture: SmolLM3-3B
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: INT4
    • Activation quantization: None
  • Release Date: 07/31/2025
  • Version: 1.0
  • License(s): Apache-2.0
  • Model Developers: RedHat (Neural Magic)

Model Optimizations

This model was obtained by quantizing weights of SmolLM3-3B to INT4 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 4, reducing GPU memory requirements (by approximately 75%). Weight quantization also reduces disk size requirements by approximately 75%. Only weights of the linear operators within transformers blocks are quantized. The llm-compressor library is used for quantization.

Deployment

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/SmolLM3-3B-quantized.w4a16"
number_gpus = 1

sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.

Creation

Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with:
python int4.py --model_path HuggingFaceTB/SmolLM3-3B --calib_size 1024 --dampening_frac 0.1 --observer minmax --actorder group --sym false

where int4.py is as follows:

import argparse
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM

from compressed_tensors.quantization import (
  QuantizationScheme,
  QuantizationArgs,
  QuantizationType,
  QuantizationStrategy,
)
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot

# Constants
DATASET_ID = "neuralmagic/LLM_compression_calibration"
DATASET_SPLIT = "train"
MAX_SEQ_LENGTH = 8192
IGNORE_MODULES = ["lm_head"]

# Argument Parsing Utilities
def parse_actorder(value: str):
  value_lower = value.lower()
  if value_lower == "false":
      return False
  if value_lower in {"weight", "group"}:
      return value_lower
  raise argparse.ArgumentTypeError(f"Invalid --actorder. Choose 'group', 'weight', or 'false', got {value}")

def parse_sym(value: str):
  value_lower = value.lower()
  if value_lower in {"true", "false"}:
      return value_lower == "true"
  raise argparse.ArgumentTypeError(f"Invalid --sym. Use 'true' or 'false', got {value}")

# Argument Parser
def get_args():
  parser = argparse.ArgumentParser(description="Quantize a model with GPTQModifier.")
  parser.add_argument('--model_path', type=str, required=True, help="Path to the unquantized model.")
  parser.add_argument('--calib_size', type=int, default=256, help="Number of samples for calibration.")
  parser.add_argument('--dampening_frac', type=float, default=0.1, help="Dampening fraction for quantization.")
  parser.add_argument('--observer', type=str, default="minmax", help="Observer type used for quantization.")
  parser.add_argument('--sym', type=parse_sym, default=True, help="Symmetric quantization (true/false).")
  parser.add_argument('--actorder', type=parse_actorder, default=False,
                      help="Activation order: 'group', 'weight', or 'false'.")
  return parser.parse_args()

def main():
  args = get_args()

  model = AutoModelForCausalLM.from_pretrained(
      args.model_path,
      device_map="auto",
      torch_dtype="auto",
      use_cache=False,
      trust_remote_code=True,
  )
  tokenizer = AutoTokenizer.from_pretrained(args.model_path)

  # Load and preprocess dataset
  ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
  ds = ds.shuffle(seed=42).select(range(args.calib_size))
  ds = ds.map(lambda x: {"text": x["text"]})
  ds = ds.map(
      lambda x: tokenizer(x["text"], padding=False, truncation=False, add_special_tokens=True),
      remove_columns=ds.column_names
  )

  # Build Quantization Scheme
  quant_scheme = QuantizationScheme(
      targets=["Linear"],
      weights=QuantizationArgs(
          num_bits=4,
          type=QuantizationType.INT,
          symmetric=args.sym,
          group_size=128,
          strategy=QuantizationStrategy.GROUP,
          observer=args.observer,
          actorder=args.actorder
      ),
      input_activations=None,
      output_activations=None,
  )

  # Define compression recipe
  recipe = [
      GPTQModifier(
          targets=["Linear"],
          ignore=IGNORE_MODULES,
          dampening_frac=args.dampening_frac,
          config_groups={"group_0": quant_scheme},
      )
  ]

  # Apply quantization
  oneshot(
      model=model,
      dataset=ds,
      recipe=recipe,
      num_calibration_samples=args.calib_size,
      max_seq_length=MAX_SEQ_LENGTH,
  )

  # Save the quantized model
  save_path = f"{args.model_path}-quantized.w4a16"
  model.save_pretrained(save_path, save_compressed=True)
  tokenizer.save_pretrained(save_path)

if __name__ == "__main__":
  main()

Evaluation

This model was evaluated on the well-known reasoning tasks: AIME24, Math-500, and GPQA-Diamond. In all cases, model outputs were generated with the vLLM engine, and evals are collected through LightEval library.

Evaluation details
  export VLLM_WORKER_MULTIPROC_METHOD=spawn
  export MODEL="RedHatAI/SmolLM3-3B-quantized.w4a16"
  export MODEL_ARGS="model_name=$MODEL,dtype=auto,max_model_length=65536,gpu_memory_utilization=0.9,tensor_parallel_size=1,add_special_tokens=False,generation_parameters={max_new_tokens:32768,temperature:0.6,top_p:0.95}"

  export TASK=aime24 # {aime24, math_500, gpqa:diamond}

  lighteval vllm $MODEL_ARGS "lighteval|${TASK}|0|0" \
      --use-chat-template \
      --output-dir out_dir

Accuracy

Category Benchmark HuggingFaceTB/SmolLM3-3B RedHatAI/SmolLM3-3B-quantized.w4a16
(this model)
Recovery
Reasoning AIME24 (pass@1:64) 45.31 39.27 86.67%
MATH-500 (pass@1:4) 89.30 87.55 98.04%
GPQA-Diamond (pass@1:8) 41.22 41.86 101.55%
Average 58.61 56.23 95.94%
Downloads last month
4
Safetensors
Model size
903M params
Tensor type
I64
·
I32
·
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RedHatAI/SmolLM3-3B-quantized.w4a16

Quantized
(50)
this model