File size: 864 Bytes
72b3aca
 
75bcabd
 
72b3aca
5e12ebd
cc0c9b7
7a97fa6
cc0c9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa6e15
cc0c9b7
 
1e26815
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
---
license: mit
language:
- en
---
This is the ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) embeddings model created with the [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) integration.

For ONNX export, run:

```bash
pip install git+https://github.com/neuralmagic/optimum-deepsparse.git
```

```python
from optimum.deepsparse import DeepSparseModelForFeatureExtraction
from transformers.onnx.utils import get_preprocessor
from pathlib import Path

model_id = "BAAI/bge-small-en-v1.5"

# load model and convert to onnx
model = DeepSparseModelForFeatureExtraction.from_pretrained(model_id, export=True)
tokenizer = get_preprocessor(model_id)

# save onnx checkpoint and tokenizer
onnx_path = Path("bge-small-en-v1.5-dense")
model.save_pretrained(onnx_path)
tokenizer.save_pretrained(onnx_path)
```