|
--- |
|
tags: |
|
- fp8 |
|
- vllm |
|
license: gemma |
|
--- |
|
|
|
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;"> |
|
gemma-2-9b-it-FP8 |
|
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" /> |
|
</h1> |
|
|
|
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;"> |
|
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" /> |
|
</a> |
|
|
|
## Model Overview |
|
- **Model Architecture:** Gemma 2 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
- **Release Date:** 7/8/2024 |
|
- **Version:** 1.0 |
|
- **License(s):** [gemma](https://ai.google.dev/gemma/terms) |
|
- **Model Developers:** Neural Magic (Red Hat) |
|
|
|
Quantized version of [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). |
|
It achieves an average score of 73.49 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.23. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations of [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) to FP8 data type, ready for inference with vLLM >= 0.5.1. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. |
|
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with a single instance of every token in random order. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "RedHatAI/gemma-2-9b-it-FP8" |
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Who are you? Please respond in pirate speak!"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
|
llm = LLM(model=model_id) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary> |
|
|
|
```bash |
|
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ |
|
--ipc=host \ |
|
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ |
|
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ |
|
--name=vllm \ |
|
registry.access.redhat.com/rhaiis/rh-vllm-cuda \ |
|
vllm serve \ |
|
--tensor-parallel-size 8 \ |
|
--max-model-len 32768 \ |
|
--enforce-eager --model RedHatAI/gemma-2-9b-it-FP8 |
|
``` |
|
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details. |
|
</details> |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary> |
|
|
|
```bash |
|
# Download model from Red Hat Registry via docker |
|
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. |
|
ilab model download --repository docker://registry.redhat.io/rhelai1/gemma-2-9b-it-FP8:1.5 |
|
``` |
|
|
|
```bash |
|
# Serve model via ilab |
|
ilab model serve --model-path ~/.cache/instructlab/models/gemma-2-9b-it-FP8 |
|
|
|
# Chat with model |
|
ilab model chat --model ~/.cache/instructlab/models/gemma-2-9b-it-FP8 |
|
``` |
|
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details. |
|
</details> |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary> |
|
|
|
```python |
|
# Setting up vllm server with ServingRuntime |
|
# Save as: vllm-servingruntime.yaml |
|
apiVersion: serving.kserve.io/v1alpha1 |
|
kind: ServingRuntime |
|
metadata: |
|
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name |
|
annotations: |
|
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe |
|
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' |
|
labels: |
|
opendatahub.io/dashboard: 'true' |
|
spec: |
|
annotations: |
|
prometheus.io/port: '8080' |
|
prometheus.io/path: '/metrics' |
|
multiModel: false |
|
supportedModelFormats: |
|
- autoSelect: true |
|
name: vLLM |
|
containers: |
|
- name: kserve-container |
|
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm |
|
command: |
|
- python |
|
- -m |
|
- vllm.entrypoints.openai.api_server |
|
args: |
|
- "--port=8080" |
|
- "--model=/mnt/models" |
|
- "--served-model-name={{.Name}}" |
|
env: |
|
- name: HF_HOME |
|
value: /tmp/hf_home |
|
ports: |
|
- containerPort: 8080 |
|
protocol: TCP |
|
``` |
|
|
|
```python |
|
# Attach model to vllm server. This is an NVIDIA template |
|
# Save as: inferenceservice.yaml |
|
apiVersion: serving.kserve.io/v1beta1 |
|
kind: InferenceService |
|
metadata: |
|
annotations: |
|
openshift.io/display-name: gemma-2-9b-it-FP8 # OPTIONAL CHANGE |
|
serving.kserve.io/deploymentMode: RawDeployment |
|
name: gemma-2-9b-it-FP8 # specify model name. This value will be used to invoke the model in the payload |
|
labels: |
|
opendatahub.io/dashboard: 'true' |
|
spec: |
|
predictor: |
|
maxReplicas: 1 |
|
minReplicas: 1 |
|
model: |
|
modelFormat: |
|
name: vLLM |
|
name: '' |
|
resources: |
|
limits: |
|
cpu: '2' # this is model specific |
|
memory: 8Gi # this is model specific |
|
nvidia.com/gpu: '1' # this is accelerator specific |
|
requests: # same comment for this block |
|
cpu: '1' |
|
memory: 4Gi |
|
nvidia.com/gpu: '1' |
|
runtime: vllm-cuda-runtime # must match the ServingRuntime name above |
|
storageUri: oci://registry.redhat.io/rhelai1/modelcar-gemma-2-9b-it-FP8:1.5 |
|
tolerations: |
|
- effect: NoSchedule |
|
key: nvidia.com/gpu |
|
operator: Exists |
|
``` |
|
|
|
```bash |
|
# make sure first to be in the project where you want to deploy the model |
|
# oc project <project-name> |
|
# apply both resources to run model |
|
# Apply the ServingRuntime |
|
oc apply -f vllm-servingruntime.yaml |
|
# Apply the InferenceService |
|
oc apply -f qwen-inferenceservice.yaml |
|
``` |
|
|
|
```python |
|
# Replace <inference-service-name> and <cluster-ingress-domain> below: |
|
# - Run `oc get inferenceservice` to find your URL if unsure. |
|
# Call the server using curl: |
|
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions |
|
-H "Content-Type: application/json" \ |
|
-d '{ |
|
"model": "gemma-2-9b-it-FP8", |
|
"stream": true, |
|
"stream_options": { |
|
"include_usage": true |
|
}, |
|
"max_tokens": 1, |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": "How can a bee fly when its wings are so small?" |
|
} |
|
] |
|
}' |
|
``` |
|
|
|
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details. |
|
</details> |
|
|
|
|
|
## Creation |
|
|
|
This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py), as presented in the code snipet below. |
|
Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
import numpy as np |
|
import torch |
|
|
|
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig |
|
|
|
MODEL_DIR = "google/gemma-2-9b-it" |
|
final_model_dir = MODEL_DIR.split("/")[-1] |
|
|
|
CONTEXT_LENGTH = 4096 |
|
NUM_SAMPLES = 512 |
|
NUM_REPEATS = 1 |
|
|
|
pretrained_model_dir = MODEL_DIR |
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=CONTEXT_LENGTH) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
tokenizer_num_tokens = len(list(tokenizer.get_vocab().values())) |
|
total_token_samples = NUM_REPEATS * tokenizer_num_tokens |
|
num_random_samp = -(-total_token_samples // CONTEXT_LENGTH) |
|
|
|
input_ids = np.tile(np.arange(tokenizer_num_tokens), NUM_REPEATS + 1)[:num_random_samp * CONTEXT_LENGTH] |
|
np.random.shuffle(input_ids) |
|
input_ids = input_ids.reshape(num_random_samp, CONTEXT_LENGTH) |
|
input_ids = torch.tensor(input_ids, dtype=torch.int64).to("cuda") |
|
|
|
quantize_config = BaseQuantizeConfig( |
|
quant_method="fp8", |
|
activation_scheme="static", |
|
) |
|
|
|
examples = input_ids |
|
|
|
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config=quantize_config) |
|
|
|
model.quantize(examples) |
|
|
|
quantized_model_dir = f"{final_model_dir}-FP8" |
|
model.save_quantized(quantized_model_dir) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/gemma-2-9b-it-FP8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \ |
|
--tasks openllm \ |
|
--batch_size auto |
|
``` |
|
|
|
### Accuracy |
|
|
|
#### Open LLM Leaderboard evaluation scores |
|
<table> |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>gemma-2-9b-it</strong> |
|
</td> |
|
<td><strong>gemma-2-9b-it-FP8(this model)</strong> |
|
</td> |
|
<td><strong>Recovery</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>72.28 |
|
</td> |
|
<td>71.99 |
|
</td> |
|
<td>99.59% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (25-shot) |
|
</td> |
|
<td>71.50 |
|
</td> |
|
<td>71.50 |
|
</td> |
|
<td>100.0% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (5-shot, strict-match) |
|
</td> |
|
<td>76.26 |
|
</td> |
|
<td>76.87 |
|
</td> |
|
<td>100.7% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot) |
|
</td> |
|
<td>81.91 |
|
</td> |
|
<td>81.70 |
|
</td> |
|
<td>99.74% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot) |
|
</td> |
|
<td>77.11 |
|
</td> |
|
<td>78.37 |
|
</td> |
|
<td>101.6% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot) |
|
</td> |
|
<td>60.32 |
|
</td> |
|
<td>60.52 |
|
</td> |
|
<td>100.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>73.23</strong> |
|
</td> |
|
<td><strong>73.49</strong> |
|
</td> |
|
<td><strong>100.36%</strong> |
|
</td> |
|
</tr> |
|
</table> |