RedHatAI/gemma-3n-E4B-it-FP8-Dynamic
Model Overview
- Model Architecture: gemma-3n-E4B-it
- Input: Audio-Vision-Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date: 08/01/2025
- Version: 1.0
- Model Developers: RedHatAI
Quantized version of google/gemma-3n-E4B-it.
Model Optimizations
This model was obtained by quantizing the weights of google/gemma-3n-E4B-it to FP8 data type, ready for inference with vLLM >= 0.10.0
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="RedHatAI/gemma-3n-E4B-it-FP8-Dynamic",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below.
Model Creation Code
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
# Load model.
model_id = "google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Recipe
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=[
"re:.*embed_audio.*",
"re:.*embed_vision.*",
"re:.*audio_tower.*",
"re:.*vision_tower.*",
"re:.*altup.*",
"re:.*lm_head.*",
"re:.*laurel.*",
"re:model\.language_model\.layers\.\d+\.per_layer_input_gate",
"re:model\.language_model\.layers\.\d+\.per_layer_projection",
"model.language_model.per_layer_model_projection",
],
),
]
SAVE_DIR = f"{model_id.split('/')[1]}-{recipe[0].scheme}"
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
recipe=recipe,
trust_remote_code_model=True,
tie_word_embeddings=True,
output_dir=SAVE_DIR,
)
# Save to disk compressed.
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated using lm_evaluation_harness for OpenLLM V1 and V2 text-based benchmarks. The evaluations were conducted using the following commands:
Evaluation Commands
OpenLLM V1
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=4096,gpu_memory_utilization=0.8,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
--tasks openllm \
--batch_size auto \
--apply_chat_template \
--fewshot_as_multiturn
Leaderboard V2
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=15000,gpu_memory_utilization=0.5,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
--tasks leaderboard \
--batch_size auto \
--apply_chat_template \
--fewshot_as_multiturn
Accuracy
Category | Metric | google/gemma-3n-E4B-it | FP8 Dynamic | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | arc_challenge | 60.24 | 59.04 | 98.01% |
gsm8k | 60.12 | 70.81 | 117.79% | |
hellaswag | 74.94 | 73.28 | 97.79% | |
mmlu | 64.14 | 64.82 | 101.06% | |
truthfulqa_mc2 | 54.87 | 54.61 | 99.53% | |
winogrande | 68.35 | 67.72 | 99.08% | |
Average | 63.78 | 65.05 | 101.99% | |
Leaderboard | bbh | 55.46 | 55.20 | 99.53% |
mmlu_pro | 34.38 | 34.28 | 99.71% | |
musr | 33.20 | 34.26 | 103.19% | |
ifeval | 84.41 | 83.93 | 99.43% | |
gpqa | 30.87 | 31.38 | 101.65% | |
math_hard | 45.54 | 46.60 | 102.33% | |
Average | 47.31 | 47.61 | 100.63% |
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support