Files changed (1) hide show
  1. README.md +160 -1
README.md CHANGED
@@ -19,7 +19,14 @@ tags:
19
  - int8
20
  ---
21
 
22
- # phi-4-quantized.w8a8
 
 
 
 
 
 
 
23
 
24
  ## Model Overview
25
  - **Model Architecture:** Phi3ForCausalLM
@@ -83,6 +90,158 @@ print(generated_text)
83
 
84
  vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  ## Creation
87
 
88
  <details>
 
19
  - int8
20
  ---
21
 
22
+ <h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
23
+ phi-4-quantized.w8a8
24
+ <img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
25
+ </h1>
26
+
27
+ <a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
28
+ <img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
29
+ </a>
30
 
31
  ## Model Overview
32
  - **Model Architecture:** Phi3ForCausalLM
 
90
 
91
  vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
92
 
93
+ <details>
94
+ <summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
95
+
96
+ ```bash
97
+ $ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
98
+ --ipc=host \
99
+ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
100
+ --env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
101
+ --name=vllm \
102
+ registry.access.redhat.com/rhaiis/rh-vllm-cuda \
103
+ vllm serve \
104
+ --tensor-parallel-size 8 \
105
+ --max-model-len 32768 \
106
+ --enforce-eager --model RedHatAI/phi-4-quantized.w8a8
107
+ ```
108
+ ​​See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
109
+ </details>
110
+
111
+ <details>
112
+ <summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary>
113
+
114
+ ```bash
115
+ # Download model from Red Hat Registry via docker
116
+ # Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
117
+ ilab model download --repository docker://registry.redhat.io/rhelai1/phi-4-quantized-w8a8:1.5
118
+ ```
119
+
120
+ ```bash
121
+ # Serve model via ilab
122
+ ilab model serve --model-path ~/.cache/instructlab/models/phi-4-quantized-w8a8
123
+
124
+ # Chat with model
125
+ ilab model chat --model ~/.cache/instructlab/models/phi-4-quantized-w8a8
126
+ ```
127
+ See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
128
+ </details>
129
+
130
+ <details>
131
+ <summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
132
+
133
+ ```python
134
+ # Setting up vllm server with ServingRuntime
135
+ # Save as: vllm-servingruntime.yaml
136
+ apiVersion: serving.kserve.io/v1alpha1
137
+ kind: ServingRuntime
138
+ metadata:
139
+ name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
140
+ annotations:
141
+ openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
142
+ opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
143
+ labels:
144
+ opendatahub.io/dashboard: 'true'
145
+ spec:
146
+ annotations:
147
+ prometheus.io/port: '8080'
148
+ prometheus.io/path: '/metrics'
149
+ multiModel: false
150
+ supportedModelFormats:
151
+ - autoSelect: true
152
+ name: vLLM
153
+ containers:
154
+ - name: kserve-container
155
+ image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
156
+ command:
157
+ - python
158
+ - -m
159
+ - vllm.entrypoints.openai.api_server
160
+ args:
161
+ - "--port=8080"
162
+ - "--model=/mnt/models"
163
+ - "--served-model-name={{.Name}}"
164
+ env:
165
+ - name: HF_HOME
166
+ value: /tmp/hf_home
167
+ ports:
168
+ - containerPort: 8080
169
+ protocol: TCP
170
+ ```
171
+
172
+ ```python
173
+ # Attach model to vllm server. This is an NVIDIA template
174
+ # Save as: inferenceservice.yaml
175
+ apiVersion: serving.kserve.io/v1beta1
176
+ kind: InferenceService
177
+ metadata:
178
+ annotations:
179
+ openshift.io/display-name: phi-4-quantized.w8a8 # OPTIONAL CHANGE
180
+ serving.kserve.io/deploymentMode: RawDeployment
181
+ name: phi-4-quantized.w8a8 # specify model name. This value will be used to invoke the model in the payload
182
+ labels:
183
+ opendatahub.io/dashboard: 'true'
184
+ spec:
185
+ predictor:
186
+ maxReplicas: 1
187
+ minReplicas: 1
188
+ model:
189
+ modelFormat:
190
+ name: vLLM
191
+ name: ''
192
+ resources:
193
+ limits:
194
+ cpu: '2' # this is model specific
195
+ memory: 8Gi # this is model specific
196
+ nvidia.com/gpu: '1' # this is accelerator specific
197
+ requests: # same comment for this block
198
+ cpu: '1'
199
+ memory: 4Gi
200
+ nvidia.com/gpu: '1'
201
+ runtime: vllm-cuda-runtime # must match the ServingRuntime name above
202
+ storageUri: oci://registry.redhat.io/rhelai1/modelcar-phi-4-quantized-w8a8:1.5
203
+ tolerations:
204
+ - effect: NoSchedule
205
+ key: nvidia.com/gpu
206
+ operator: Exists
207
+ ```
208
+
209
+ ```bash
210
+ # make sure first to be in the project where you want to deploy the model
211
+ # oc project <project-name>
212
+ # apply both resources to run model
213
+ # Apply the ServingRuntime
214
+ oc apply -f vllm-servingruntime.yaml
215
+ # Apply the InferenceService
216
+ oc apply -f qwen-inferenceservice.yaml
217
+ ```
218
+
219
+ ```python
220
+ # Replace <inference-service-name> and <cluster-ingress-domain> below:
221
+ # - Run `oc get inferenceservice` to find your URL if unsure.
222
+ # Call the server using curl:
223
+ curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
224
+ -H "Content-Type: application/json" \
225
+ -d '{
226
+ "model": "phi-4-quantized.w8a8",
227
+ "stream": true,
228
+ "stream_options": {
229
+ "include_usage": true
230
+ },
231
+ "max_tokens": 1,
232
+ "messages": [
233
+ {
234
+ "role": "user",
235
+ "content": "How can a bee fly when its wings are so small?"
236
+ }
237
+ ]
238
+ }'
239
+ ```
240
+
241
+ See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
242
+ </details>
243
+
244
+
245
  ## Creation
246
 
247
  <details>