whisper-large-v3-FP8-Dynamic
Model Overview
- Model Architecture: whisper-large-v3
- Input: Audio-Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date: 04/16/2025
- Version: 1.0
- Model Developers: Neural Magic
Quantized version of openai/whisper-large-v3.
Model Optimizations
This model was obtained by quantizing the weights of openai/whisper-large-v3 to FP8 data type, ready for inference with vLLM >= 0.5.2.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm.assets.audio import AudioAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="neuralmagic/whisper-large-v3-FP8-Dynamic",
max_model_len=448,
max_num_seqs=400,
limit_mm_per_prompt={"audio": 1},
)
# prepare inputs
inputs = { # Test explicit encoder/decoder prompt
"encoder_prompt": {
"prompt": "",
"multi_modal_data": {
"audio": AudioAsset("winning_call").audio_and_sample_rate,
},
},
"decoder_prompt": "<|startoftranscript|>",
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below.
Model Creation Code
python quantize.py \
--model_path openai/whisper-large-v3 \
--quant_path output_dir/whisper-large-v3-FP8-Dynamic
import argparse
import torch
import os
from datasets import load_dataset
from transformers import WhisperProcessor
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration
from compressed_tensors.quantization import QuantizationType
# --- Args ---
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, required=True)
parser.add_argument('--quant_path', type=str, required=True)
parser.add_argument('--observer', type=str, default="minmax")
args = parser.parse_args()
# --- Load Model ---
model = TraceableWhisperForConditionalGeneration.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
)
model.config.forced_decoder_ids = None
processor = WhisperProcessor.from_pretrained(args.model_path)
# --- Recipe (FP8 Dynamic) ---
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["WhisperEncoderLayer", "WhisperDecoderLayer"],
ignore=["re:.*lm_head"],
)
]
# --- Run oneshot ---
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
)
# --- Save ---
os.makedirs(args.quant_path, exist_ok=True)
model.save_pretrained(args.quant_path, save_compressed=True)
processor.save_pretrained(args.quant_path)
Evaluation
The model was evaluated on LibriSpeech and Fleurs datasets using lmms-eval, via the following commands:
Evaluation Commands
Librispeech:
lmms-eval \
--model=whisper_vllm \
--model_args="pretrained=neuralmagic-ent/whisper-large-v3-FP8-Dynamic" \
--batch_size 64 \
--output_path <output_file_path> \
--tasks librispeech
Fleurs:
lmms-eval \
--model=whisper_vllm \
--model_args="pretrained=neuralmagic-ent/whisper-large-v3-FP8-Dynamic" \
--batch_size 64 \
--output_path <output_file_path> \
--tasks fleurs
Benchmark | Split | BF16 | w8a8 | Recovery (%) |
---|---|---|---|---|
LibriSpeech (WER) | test-clean | 2.1725 | 2.097 | 103.60% |
test-other | 3.903 | 3.9617 | 98.52% | |
Fleurs (X→en, WER) | cmn_hans_cn | 7.7935 | 7.6676 | 101.64% |
en | 4.0168 | 4.0236 | 99.83% | |
yue_hant_hk | 9.4383 | 9.4038 | 100.37% |
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for RedHatAI/whisper-large-v3-FP8-Dynamic
Base model
openai/whisper-large-v3