File size: 9,680 Bytes
ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 10c6e0f ffaf0d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import os
import sys
import json
import torch
import torch.nn.functional as F
import librosa
import numpy as np
from pathlib import Path
from tqdm import tqdm
import warnings
from torch.nn.utils import remove_weight_norm, weight_norm
import librosa
import torch
import torch.nn.functional as F
import numpy as np
import json
import torch
from higgs_audio_tokenizer import HiggsAudioTokenizer
import torch
import torch.nn as nn
import warnings
warnings.filterwarnings('ignore')
def remove_weight_norms_from_model(model):
for module in model.modules():
try:
remove_weight_norm(module)
except:
continue
return model
class EncodedResult:
def __init__(self, audio_codes):
self.audio_codes = audio_codes
def encode_batch(model, x_batch):
e_semantic_input = model.get_regress_target(x_batch).detach()
e_semantic = model.encoder_semantic(e_semantic_input.transpose(1, 2))
e_acoustic = model.encoder(x_batch)
if e_acoustic.shape[2] != e_semantic.shape[2]:
pad_size = 160 * model.semantic_downsample_factor
x_slice = x_batch[:, 0, :]
x_padded = F.pad(x_slice, (pad_size, pad_size))
e_acoustic = model.encoder(x_padded.unsqueeze(1))
min_len = min(e_acoustic.shape[2], e_semantic.shape[2])
e_acoustic = e_acoustic[:, :, :min_len]
e_semantic = e_semantic[:, :, :min_len]
e = torch.cat([e_acoustic, e_semantic], dim=1)
e = model.fc_prior(e.transpose(1, 2))
if model.quantizer_type == "RVQ":
e = e.transpose(1, 2)
_, codes, _, _ = model.quantizer(e, model.frame_rate, None)
codes = codes.permute(1, 0, 2)
else:
quantized, codes = model.quantizer(e)
codes = codes.permute(0, 2, 1)
return EncodedResult(audio_codes=codes)
def fix_all_inference_issues(model):
device = next(model.parameters()).device
model.eval()
with torch.no_grad():
for module in model.modules():
if isinstance(module, nn.Module):
module.eval()
if hasattr(module, 'training'):
module.training = False
if hasattr(model, 'semantic_model'):
print("Fixing semantic model...")
model.semantic_model = model.semantic_model.to(device)
model.semantic_model.eval()
def disable_gradient_checkpointing(module):
if hasattr(module, 'gradient_checkpointing'):
module.gradient_checkpointing = False
if hasattr(module, 'gradient_checkpointing_disable'):
try:
module.gradient_checkpointing_disable()
except:
pass
for child in module.children():
disable_gradient_checkpointing(child)
disable_gradient_checkpointing(model.semantic_model)
if hasattr(model.semantic_model, 'encoder'):
model.semantic_model.encoder.gradient_checkpointing = False
if hasattr(model.semantic_model.encoder, 'layers'):
for layer in model.semantic_model.encoder.layers:
if hasattr(layer, 'gradient_checkpointing'):
layer.gradient_checkpointing = False
def set_dropout_eval(module):
if isinstance(module, nn.Dropout):
module.eval()
module.training = False
for child in module.children():
set_dropout_eval(child)
set_dropout_eval(model)
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return model
def inference_pipeline(checkpoint_path, config_path, device='cuda'):
print("Loading config...")
with open(config_path, 'r') as f:
config = json.load(f)
print("Creating model...")
model = HiggsAudioTokenizer(
n_filters=config['n_filters'],
D=config['D'],
target_bandwidths=config['target_bandwidths'],
ratios=config['ratios'],
sample_rate=config['sample_rate'],
bins=config['bins'],
n_q=config['n_q'],
codebook_dim=config.get('codebook_dim', None),
semantic_techer=config['semantic_techer'],
device=device
).to(device)
print("Loading checkpoint...")
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
else:
state_dict = checkpoint
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('module.'):
new_state_dict[k[7:]] = v
else:
new_state_dict[k] = v
model.load_state_dict(new_state_dict, strict=False)
print("Fixing inference issues...")
model = fix_all_inference_issues(model)
return model
warnings.filterwarnings("ignore")
OUTPUT_DIR = "/home/ubuntu/data_boson_44.1khz"
BATCH_SIZE = 32
SAMPLE_RATE = 44100
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
DATASET_PATH = "/home/ubuntu/ttsar/Layla/src_bpe_2/Qanary_data"
print(f"Using device: {DEVICE}")
os.chdir("/home/ubuntu/ttsar/boson_audio_codec/audio_processing")
from datasets import load_from_disk
print(f"Loading dataset from: {DATASET_PATH}")
ds = load_from_disk(DATASET_PATH)
print(f"Dataset info: {ds}")
columns_to_remove = ['spk', 'duration', 'codes', 'input_ids', 'attention_mask']
existing_columns = [col for col in columns_to_remove if col in ds.column_names]
if existing_columns:
ds = ds.remove_columns(existing_columns)
df = ds.to_pandas()
print(f"Loaded {len(df)} files from dataset")
os.makedirs(OUTPUT_DIR, exist_ok=True)
print(f"Output directory '{OUTPUT_DIR}' is ready.")
print("Checking for already processed files...")
def get_output_path(audio_path):
base_name = Path(audio_path).stem
return os.path.join(OUTPUT_DIR, f"{base_name}.pt")
original_count = len(df)
df['output_exists'] = df['filename'].apply(lambda x: os.path.exists(get_output_path(x)))
df_filtered = df[~df['output_exists']].copy()
skipped_count = original_count - len(df_filtered)
print(f"Found {skipped_count} already processed files. Skipping them.")
print(f"Processing {len(df_filtered)} remaining files.")
if len(df_filtered) == 0:
print("All files have already been processed!")
exit()
print("Loading Higgs Audio Tokenizer model...")
from transformers import HubertModel
from higgs_audio_tokenizer import HiggsAudioTokenizer
checkpoint_path = '/home/ubuntu/ttsar/boson_audio_codec/audio_processing/outputs_CQT/checkpoints/step_99000.pth'
config_path = '/home/ubuntu/ttsar/boson_audio_codec/audio_processing/config copy.json'
device = 'cuda'
model = inference_pipeline(checkpoint_path, config_path, device)
_ = model.eval()
model = remove_weight_norms_from_model(model)
print(f"Model loaded on {DEVICE}")
hop_length = model.hop_length
print(f"Encoder hop length: {hop_length}")
print(f"\nStarting batch processing with batch size {BATCH_SIZE}...")
filenames = df_filtered['filename'].tolist()
total_processed = 0
total_errors = 0
with torch.no_grad():
for batch_start in tqdm(range(0, len(filenames), BATCH_SIZE), desc="Processing batches"):
batch_end = min(batch_start + BATCH_SIZE, len(filenames))
batch_filenames = filenames[batch_start:batch_end]
batch_audio = []
batch_lengths = []
batch_outputs = []
for filename in batch_filenames:
output_path = get_output_path(filename)
if os.path.exists(output_path):
continue
try:
wav, _ = librosa.load(filename, sr=SAMPLE_RATE)
wav_tensor = torch.from_numpy(wav).float()
batch_audio.append(wav_tensor)
batch_lengths.append(len(wav))
batch_outputs.append(output_path)
except Exception as e:
print(f"\nError loading {filename}: {e}")
total_errors += 1
continue
if not batch_audio:
continue
max_len = max(len(x) for x in batch_audio)
padded_batch = []
for audio in batch_audio:
pad_len = max_len - len(audio)
if pad_len > 0:
audio = F.pad(audio, (0, pad_len), mode='constant', value=0)
padded_batch.append(audio)
batch_tensor = torch.stack(padded_batch, dim=0)
batch_tensor = batch_tensor.unsqueeze(1)
batch_tensor = batch_tensor.to(DEVICE)
try:
encoded = encode_batch(model, batch_tensor)
codes = encoded.audio_codes
for idx, (output_path, orig_len) in enumerate(zip(batch_outputs, batch_lengths)):
true_code_len = int(np.ceil(orig_len / hop_length))
item_codes = codes[idx, :, :true_code_len].cpu()
torch.save(item_codes, output_path)
total_processed += 1
except Exception as e:
print(f"\nError encoding batch: {e}")
total_errors += len(batch_outputs)
print("\n" + "="*50)
print("PROCESSING COMPLETE!")
print("="*50)
print(f"Successfully processed: {total_processed} files")
print(f"Previously processed: {skipped_count} files")
print(f"Errors encountered: {total_errors} files")
print(f"Output directory: {OUTPUT_DIR}")
final_count = len(list(Path(OUTPUT_DIR).glob("*.pt")))
print(f"Total .pt files in output: {final_count}") |