Higgs_Codec_Extended / discriminator.py
Respair's picture
Upload folder using huggingface_hub
ffaf0d2 verified
raw
history blame
19.6 kB
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# from audiotools import AudioSignal
# from audiotools import ml
# from audiotools import STFTParams
# from einops import rearrange
# from torch.nn.utils import weight_norm
# def WNConv1d(*args, **kwargs):
# act = kwargs.pop("act", True)
# conv = weight_norm(nn.Conv1d(*args, **kwargs))
# if not act:
# return conv
# return nn.Sequential(conv, nn.LeakyReLU(0.1))
# def WNConv2d(*args, **kwargs):
# act = kwargs.pop("act", True)
# conv = weight_norm(nn.Conv2d(*args, **kwargs))
# if not act:
# return conv
# return nn.Sequential(conv, nn.LeakyReLU(0.1))
# class MPD(nn.Module):
# def __init__(self, period):
# super().__init__()
# self.period = period
# self.convs = nn.ModuleList(
# [
# WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
# WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
# WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
# WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
# WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
# ]
# )
# self.conv_post = WNConv2d(
# 1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
# )
# def pad_to_period(self, x):
# t = x.shape[-1]
# x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
# return x
# def forward(self, x):
# fmap = []
# x = self.pad_to_period(x)
# x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
# for layer in self.convs:
# x = layer(x)
# fmap.append(x)
# x = self.conv_post(x)
# fmap.append(x)
# return fmap
# class MSD(nn.Module):
# def __init__(self, rate: int = 1, sample_rate: int = 44100):
# super().__init__()
# self.convs = nn.ModuleList(
# [
# WNConv1d(1, 16, 15, 1, padding=7),
# WNConv1d(16, 64, 41, 4, groups=4, padding=20),
# WNConv1d(64, 256, 41, 4, groups=16, padding=20),
# WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
# WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
# WNConv1d(1024, 1024, 5, 1, padding=2),
# ]
# )
# self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
# self.sample_rate = sample_rate
# self.rate = rate
# def forward(self, x):
# x = AudioSignal(x, self.sample_rate)
# x.resample(self.sample_rate // self.rate)
# x = x.audio_data
# fmap = []
# for l in self.convs:
# x = l(x)
# fmap.append(x)
# x = self.conv_post(x)
# fmap.append(x)
# return fmap
# BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
# class MRD(nn.Module):
# def __init__(
# self,
# window_length: int,
# hop_factor: float = 0.25,
# sample_rate: int = 44100,
# bands: list = BANDS,
# ):
# """Complex multi-band spectrogram discriminator.
# Parameters
# ----------
# window_length : int
# Window length of STFT.
# hop_factor : float, optional
# Hop factor of the STFT, defaults to ``0.25 * window_length``.
# sample_rate : int, optional
# Sampling rate of audio in Hz, by default 44100
# bands : list, optional
# Bands to run discriminator over.
# """
# super().__init__()
# self.window_length = window_length
# self.hop_factor = hop_factor
# self.sample_rate = sample_rate
# self.stft_params = STFTParams(
# window_length=window_length,
# hop_length=int(window_length * hop_factor),
# match_stride=True,
# )
# n_fft = window_length // 2 + 1
# bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
# self.bands = bands
# ch = 32
# convs = lambda: nn.ModuleList(
# [
# WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
# WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
# WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
# WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
# WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
# ]
# )
# self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
# self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
# def spectrogram(self, x):
# x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
# x = torch.view_as_real(x.stft())
# x = rearrange(x, "b 1 f t c -> (b 1) c t f")
# # Split into bands
# x_bands = [x[..., b[0] : b[1]] for b in self.bands]
# return x_bands
# def forward(self, x):
# x_bands = self.spectrogram(x)
# fmap = []
# x = []
# for band, stack in zip(x_bands, self.band_convs):
# for layer in stack:
# band = layer(band)
# fmap.append(band)
# x.append(band)
# x = torch.cat(x, dim=-1)
# x = self.conv_post(x)
# fmap.append(x)
# return fmap
# class Discriminator(ml.BaseModel):
# def __init__(
# self,
# rates: list = [],
# periods: list = [2, 3, 5, 7, 11],
# fft_sizes: list = [2048, 1024, 512],
# sample_rate: int = 44100,
# bands: list = BANDS,
# ):
# """Discriminator that combines multiple discriminators.
# Parameters
# ----------
# rates : list, optional
# sampling rates (in Hz) to run MSD at, by default []
# If empty, MSD is not used.
# periods : list, optional
# periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
# fft_sizes : list, optional
# Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
# sample_rate : int, optional
# Sampling rate of audio in Hz, by default 44100
# bands : list, optional
# Bands to run MRD at, by default `BANDS`
# """
# super().__init__()
# discs = []
# discs += [MPD(p) for p in periods]
# discs += [MSD(r, sample_rate=sample_rate) for r in rates]
# discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
# self.discriminators = nn.ModuleList(discs)
# def preprocess(self, y):
# # Remove DC offset
# y = y - y.mean(dim=-1, keepdims=True)
# # Peak normalize the volume of input audio
# y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
# return y
# def forward(self, x):
# x = self.preprocess(x)
# fmaps = [d(x) for d in self.discriminators]
# return fmaps
# if __name__ == "__main__":
# disc = Discriminator()
# x = torch.zeros(1, 1, 44100)
# results = disc(x)
# for i, result in enumerate(results):
# print(f"disc{i}")
# for i, r in enumerate(result):
# print(r.shape, r.mean(), r.min(), r.max())
# print()
import torch
import torch.nn as nn
import torch.nn.functional as F
from audiotools import AudioSignal, STFTParams
from audiotools import ml
from einops import rearrange
from torch.nn.utils import weight_norm
import torchaudio
import nnAudio.features as features
from munch import Munch
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
def WNConv1d(*args, **kwargs):
act = kwargs.pop("act", True)
conv = weight_norm(nn.Conv1d(*args, **kwargs))
if not act:
return conv
return nn.Sequential(conv, nn.LeakyReLU(0.1))
def WNConv2d(*args, **kwargs):
act = kwargs.pop("act", True)
conv = weight_norm(nn.Conv2d(*args, **kwargs))
if not act:
return conv
return nn.Sequential(conv, nn.LeakyReLU(0.1))
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def get_2d_padding(kernel_size, dilation=(1, 1)):
return (int((kernel_size[0] * dilation[0] - dilation[0]) / 2),
int((kernel_size[1] * dilation[1] - dilation[1]) / 2))
class NormConv2d(nn.Module):
"""Conv2d with normalization"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, norm="weight_norm"):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, bias)
if norm == "weight_norm":
self.conv = weight_norm(self.conv)
def forward(self, x):
return self.conv(x)
class MPD(nn.Module):
def __init__(self, period):
super().__init__()
self.period = period
self.convs = nn.ModuleList([
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
])
self.conv_post = WNConv2d(1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False)
def pad_to_period(self, x):
t = x.shape[-1]
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
return x
def forward(self, x):
fmap = []
x = self.pad_to_period(x)
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
for layer in self.convs:
x = layer(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return fmap
class MSD(nn.Module):
def __init__(self, rate: int = 1, sample_rate: int = 44100):
super().__init__()
self.convs = nn.ModuleList([
WNConv1d(1, 16, 15, 1, padding=7),
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
WNConv1d(1024, 1024, 5, 1, padding=2),
])
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
self.sample_rate = sample_rate
self.rate = rate
def forward(self, x):
x = AudioSignal(x, self.sample_rate)
x.resample(self.sample_rate // self.rate)
x = x.audio_data
fmap = []
for l in self.convs:
x = l(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return fmap
class DiscriminatorCQT(nn.Module):
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
super().__init__()
self.cfg = cfg
self.filters = cfg.filters
self.max_filters = cfg.max_filters
self.filters_scale = cfg.filters_scale
self.kernel_size = (3, 9)
self.dilations = cfg.dilations
self.stride = (1, 2)
self.in_channels = cfg.in_channels
self.out_channels = cfg.out_channels
self.fs = cfg.sampling_rate
self.hop_length = hop_length
self.n_octaves = n_octaves
self.bins_per_octave = bins_per_octave
self.cqt_transform = features.cqt.CQT2010v2(
sr=self.fs * 2,
hop_length=self.hop_length,
n_bins=self.bins_per_octave * self.n_octaves,
bins_per_octave=self.bins_per_octave,
output_format="Complex",
pad_mode="constant",
)
self.conv_pres = nn.ModuleList()
for i in range(self.n_octaves):
self.conv_pres.append(
NormConv2d(
self.in_channels * 2, # Real + Imaginary
self.in_channels * 2,
kernel_size=self.kernel_size,
padding=get_2d_padding(self.kernel_size),
norm="weight_norm",
)
)
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(
self.in_channels * 2,
self.filters,
kernel_size=self.kernel_size,
padding=get_2d_padding(self.kernel_size),
)
)
in_chs = min(self.filters_scale * self.filters, self.max_filters)
for i, dilation in enumerate(self.dilations):
out_chs = min((self.filters_scale ** (i + 1)) * self.filters, self.max_filters)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=self.kernel_size,
stride=self.stride,
dilation=(dilation, 1),
padding=get_2d_padding(self.kernel_size, (dilation, 1)),
norm="weight_norm",
)
)
in_chs = out_chs
out_chs = min(
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
self.max_filters,
)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
norm="weight_norm",
)
)
self.conv_post = NormConv2d(
out_chs,
self.out_channels,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
norm="weight_norm",
)
self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
self.resample = torchaudio.transforms.Resample(
orig_freq=self.fs, new_freq=self.fs * 2
)
def forward(self, x):
fmap = []
x = self.resample(x)
z = self.cqt_transform(x)
z_amplitude = z[:, :, :, 0].unsqueeze(1)
z_phase = z[:, :, :, 1].unsqueeze(1)
z = torch.cat([z_amplitude, z_phase], dim=1)
z = rearrange(z, "b c w t -> b c t w")
latent_z = []
for i in range(self.n_octaves):
octave_band = z[:, :, :, i * self.bins_per_octave : (i + 1) * self.bins_per_octave]
processed_band = self.conv_pres[i](octave_band)
latent_z.append(processed_band)
latent_z = torch.cat(latent_z, dim=-1)
for i, l in enumerate(self.convs):
latent_z = l(latent_z)
latent_z = self.activation(latent_z)
fmap.append(latent_z)
latent_z = self.conv_post(latent_z)
fmap.append(latent_z)
return fmap
class MultiScaleSubbandCQT(nn.Module):
"""CQT discriminator at multiple scales"""
def __init__(self, sample_rate=44100):
super().__init__()
cfg = Munch({
"hop_lengths": [1024, 512, 512],
"sampling_rate": sample_rate,
"filters": 32,
"max_filters": 1024,
"filters_scale": 1,
"dilations": [1, 2, 4],
"in_channels": 1,
"out_channels": 1,
"n_octaves": [10, 10, 10],
"bins_per_octaves": [24, 36, 48],
})
self.cfg = cfg
self.discriminators = nn.ModuleList([
DiscriminatorCQT(
cfg,
hop_length=cfg.hop_lengths[i],
n_octaves=cfg.n_octaves[i],
bins_per_octave=cfg.bins_per_octaves[i],
)
for i in range(len(cfg.hop_lengths))
])
def forward(self, x):
fmap = []
for disc in self.discriminators:
fmap.extend(disc(x))
return fmap
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
class MRD(nn.Module):
def __init__(self, window_length: int, hop_factor: float = 0.25,
sample_rate: int = 44100, bands: list = BANDS):
"""Multi-resolution spectrogram discriminator."""
super().__init__()
self.window_length = window_length
self.hop_factor = hop_factor
self.sample_rate = sample_rate
self.stft_params = STFTParams(
window_length=window_length,
hop_length=int(window_length * hop_factor),
match_stride=True,
)
n_fft = window_length // 2 + 1
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
self.bands = bands
ch = 32
convs = lambda: nn.ModuleList([
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
])
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
def spectrogram(self, x):
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
x = torch.view_as_real(x.stft())
x = rearrange(x, "b 1 f t c -> (b 1) c t f")
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
return x_bands
def forward(self, x):
x_bands = self.spectrogram(x)
fmap = []
x = []
for band, stack in zip(x_bands, self.band_convs):
for layer in stack:
band = layer(band)
fmap.append(band)
x.append(band)
x = torch.cat(x, dim=-1)
x = self.conv_post(x)
fmap.append(x)
return fmap
class Discriminator(ml.BaseModel):
def __init__(
self,
rates: list = [],
periods: list = [2, 3, 5, 7, 11],
fft_sizes: list = [2048, 1024, 512],
sample_rate: int = 44100,
):
"""Discriminator combining MPD, MSD, MRD and CQT.
Parameters
----------
rates : list, optional
Sampling rates for MSD, by default []
periods : list, optional
Periods for MPD, by default [2, 3, 5, 7, 11]
fft_sizes : list, optional
FFT sizes for MRD, by default [2048, 1024, 512]
sample_rate : int, optional
Sampling rate of audio in Hz, by default 44100
"""
super().__init__()
discs = []
# Time-domain discriminators
discs += [MPD(p) for p in periods]
discs += [MSD(r, sample_rate=sample_rate) for r in rates]
# Frequency-domain discriminators (both STFT and CQT)
discs += [MRD(f, sample_rate=sample_rate) for f in fft_sizes]
discs += [MultiScaleSubbandCQT(sample_rate=sample_rate)]
self.discriminators = nn.ModuleList(discs)
def preprocess(self, y):
# Remove DC offset
y = y - y.mean(dim=-1, keepdims=True)
# Peak normalize
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
return y
def forward(self, x):
x = self.preprocess(x)
fmaps = [d(x) for d in self.discriminators]
return fmaps