|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from audiotools import AudioSignal, STFTParams |
|
|
from audiotools import ml |
|
|
from einops import rearrange |
|
|
from torch.nn.utils import weight_norm |
|
|
import torchaudio |
|
|
import nnAudio.features as features |
|
|
from munch import Munch |
|
|
|
|
|
|
|
|
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)] |
|
|
|
|
|
|
|
|
def WNConv1d(*args, **kwargs): |
|
|
act = kwargs.pop("act", True) |
|
|
conv = weight_norm(nn.Conv1d(*args, **kwargs)) |
|
|
if not act: |
|
|
return conv |
|
|
return nn.Sequential(conv, nn.LeakyReLU(0.1)) |
|
|
|
|
|
|
|
|
def WNConv2d(*args, **kwargs): |
|
|
act = kwargs.pop("act", True) |
|
|
conv = weight_norm(nn.Conv2d(*args, **kwargs)) |
|
|
if not act: |
|
|
return conv |
|
|
return nn.Sequential(conv, nn.LeakyReLU(0.1)) |
|
|
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
|
|
|
def get_2d_padding(kernel_size, dilation=(1, 1)): |
|
|
return (int((kernel_size[0] * dilation[0] - dilation[0]) / 2), |
|
|
int((kernel_size[1] * dilation[1] - dilation[1]) / 2)) |
|
|
|
|
|
|
|
|
class NormConv2d(nn.Module): |
|
|
"""Conv2d with normalization""" |
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
|
|
padding=0, dilation=1, groups=1, bias=True, norm="weight_norm"): |
|
|
super().__init__() |
|
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, |
|
|
stride, padding, dilation, groups, bias) |
|
|
if norm == "weight_norm": |
|
|
self.conv = weight_norm(self.conv) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.conv(x) |
|
|
|
|
|
|
|
|
class MPD(nn.Module): |
|
|
def __init__(self, period): |
|
|
super().__init__() |
|
|
self.period = period |
|
|
self.convs = nn.ModuleList([ |
|
|
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)), |
|
|
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)), |
|
|
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)), |
|
|
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)), |
|
|
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)), |
|
|
]) |
|
|
self.conv_post = WNConv2d(1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False) |
|
|
|
|
|
def pad_to_period(self, x): |
|
|
t = x.shape[-1] |
|
|
x = F.pad(x, (0, self.period - t % self.period), mode="reflect") |
|
|
return x |
|
|
|
|
|
def forward(self, x): |
|
|
fmap = [] |
|
|
x = self.pad_to_period(x) |
|
|
x = rearrange(x, "b c (l p) -> b c l p", p=self.period) |
|
|
|
|
|
for layer in self.convs: |
|
|
x = layer(x) |
|
|
fmap.append(x) |
|
|
|
|
|
x = self.conv_post(x) |
|
|
fmap.append(x) |
|
|
return fmap |
|
|
|
|
|
|
|
|
class MSD(nn.Module): |
|
|
def __init__(self, rate: int = 1, sample_rate: int = 44100): |
|
|
super().__init__() |
|
|
self.convs = nn.ModuleList([ |
|
|
WNConv1d(1, 16, 15, 1, padding=7), |
|
|
WNConv1d(16, 64, 41, 4, groups=4, padding=20), |
|
|
WNConv1d(64, 256, 41, 4, groups=16, padding=20), |
|
|
WNConv1d(256, 1024, 41, 4, groups=64, padding=20), |
|
|
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20), |
|
|
WNConv1d(1024, 1024, 5, 1, padding=2), |
|
|
]) |
|
|
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False) |
|
|
self.sample_rate = sample_rate |
|
|
self.rate = rate |
|
|
|
|
|
def forward(self, x): |
|
|
x = AudioSignal(x, self.sample_rate) |
|
|
x.resample(self.sample_rate // self.rate) |
|
|
x = x.audio_data |
|
|
|
|
|
fmap = [] |
|
|
for l in self.convs: |
|
|
x = l(x) |
|
|
fmap.append(x) |
|
|
x = self.conv_post(x) |
|
|
fmap.append(x) |
|
|
return fmap |
|
|
|
|
|
|
|
|
class DiscriminatorCQT(nn.Module): |
|
|
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave): |
|
|
super().__init__() |
|
|
self.cfg = cfg |
|
|
self.filters = cfg.filters |
|
|
self.max_filters = cfg.max_filters |
|
|
self.filters_scale = cfg.filters_scale |
|
|
self.kernel_size = (3, 9) |
|
|
self.dilations = cfg.dilations |
|
|
self.stride = (1, 2) |
|
|
self.in_channels = cfg.in_channels |
|
|
self.out_channels = cfg.out_channels |
|
|
self.fs = cfg.sampling_rate |
|
|
self.hop_length = hop_length |
|
|
self.n_octaves = n_octaves |
|
|
self.bins_per_octave = bins_per_octave |
|
|
|
|
|
self.cqt_transform = features.cqt.CQT2010v2( |
|
|
sr=self.fs * 2, |
|
|
hop_length=self.hop_length, |
|
|
n_bins=self.bins_per_octave * self.n_octaves, |
|
|
bins_per_octave=self.bins_per_octave, |
|
|
output_format="Complex", |
|
|
pad_mode="constant", |
|
|
) |
|
|
|
|
|
self.conv_pres = nn.ModuleList() |
|
|
for i in range(self.n_octaves): |
|
|
self.conv_pres.append( |
|
|
NormConv2d( |
|
|
self.in_channels * 2, |
|
|
self.in_channels * 2, |
|
|
kernel_size=self.kernel_size, |
|
|
padding=get_2d_padding(self.kernel_size), |
|
|
norm="weight_norm", |
|
|
) |
|
|
) |
|
|
|
|
|
self.convs = nn.ModuleList() |
|
|
self.convs.append( |
|
|
NormConv2d( |
|
|
self.in_channels * 2, |
|
|
self.filters, |
|
|
kernel_size=self.kernel_size, |
|
|
padding=get_2d_padding(self.kernel_size), |
|
|
) |
|
|
) |
|
|
|
|
|
in_chs = min(self.filters_scale * self.filters, self.max_filters) |
|
|
for i, dilation in enumerate(self.dilations): |
|
|
out_chs = min((self.filters_scale ** (i + 1)) * self.filters, self.max_filters) |
|
|
self.convs.append( |
|
|
NormConv2d( |
|
|
in_chs, |
|
|
out_chs, |
|
|
kernel_size=self.kernel_size, |
|
|
stride=self.stride, |
|
|
dilation=(dilation, 1), |
|
|
padding=get_2d_padding(self.kernel_size, (dilation, 1)), |
|
|
norm="weight_norm", |
|
|
) |
|
|
) |
|
|
in_chs = out_chs |
|
|
|
|
|
out_chs = min( |
|
|
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters, |
|
|
self.max_filters, |
|
|
) |
|
|
self.convs.append( |
|
|
NormConv2d( |
|
|
in_chs, |
|
|
out_chs, |
|
|
kernel_size=(self.kernel_size[0], self.kernel_size[0]), |
|
|
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])), |
|
|
norm="weight_norm", |
|
|
) |
|
|
) |
|
|
|
|
|
self.conv_post = NormConv2d( |
|
|
out_chs, |
|
|
self.out_channels, |
|
|
kernel_size=(self.kernel_size[0], self.kernel_size[0]), |
|
|
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])), |
|
|
norm="weight_norm", |
|
|
) |
|
|
|
|
|
self.activation = torch.nn.LeakyReLU(negative_slope=0.1) |
|
|
self.resample = torchaudio.transforms.Resample( |
|
|
orig_freq=self.fs, new_freq=self.fs * 2 |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
fmap = [] |
|
|
x = self.resample(x) |
|
|
z = self.cqt_transform(x) |
|
|
|
|
|
|
|
|
z_amplitude = z[:, :, :, 0].unsqueeze(1) |
|
|
z_phase = z[:, :, :, 1].unsqueeze(1) |
|
|
z = torch.cat([z_amplitude, z_phase], dim=1) |
|
|
z = rearrange(z, "b c w t -> b c t w") |
|
|
|
|
|
latent_z = [] |
|
|
for i in range(self.n_octaves): |
|
|
octave_band = z[:, :, :, i * self.bins_per_octave : (i + 1) * self.bins_per_octave] |
|
|
processed_band = self.conv_pres[i](octave_band) |
|
|
latent_z.append(processed_band) |
|
|
latent_z = torch.cat(latent_z, dim=-1) |
|
|
|
|
|
for i, l in enumerate(self.convs): |
|
|
latent_z = l(latent_z) |
|
|
latent_z = self.activation(latent_z) |
|
|
fmap.append(latent_z) |
|
|
|
|
|
latent_z = self.conv_post(latent_z) |
|
|
fmap.append(latent_z) |
|
|
|
|
|
return fmap |
|
|
|
|
|
|
|
|
class MultiScaleSubbandCQT(nn.Module): |
|
|
"""CQT discriminator at multiple scales""" |
|
|
def __init__(self, sample_rate=44100): |
|
|
super().__init__() |
|
|
cfg = Munch({ |
|
|
"hop_lengths": [1024, 512, 512], |
|
|
"sampling_rate": sample_rate, |
|
|
"filters": 32, |
|
|
"max_filters": 1024, |
|
|
"filters_scale": 1, |
|
|
"dilations": [1, 2, 4], |
|
|
"in_channels": 1, |
|
|
"out_channels": 1, |
|
|
"n_octaves": [10, 10, 10], |
|
|
"bins_per_octaves": [24, 36, 48], |
|
|
}) |
|
|
self.cfg = cfg |
|
|
self.discriminators = nn.ModuleList([ |
|
|
DiscriminatorCQT( |
|
|
cfg, |
|
|
hop_length=cfg.hop_lengths[i], |
|
|
n_octaves=cfg.n_octaves[i], |
|
|
bins_per_octave=cfg.bins_per_octaves[i], |
|
|
) |
|
|
for i in range(len(cfg.hop_lengths)) |
|
|
]) |
|
|
|
|
|
def forward(self, x): |
|
|
fmap = [] |
|
|
for disc in self.discriminators: |
|
|
fmap.extend(disc(x)) |
|
|
return fmap |
|
|
|
|
|
|
|
|
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)] |
|
|
|
|
|
class MRD(nn.Module): |
|
|
def __init__(self, window_length: int, hop_factor: float = 0.25, |
|
|
sample_rate: int = 44100, bands: list = BANDS): |
|
|
"""Multi-resolution spectrogram discriminator.""" |
|
|
super().__init__() |
|
|
self.window_length = window_length |
|
|
self.hop_factor = hop_factor |
|
|
self.sample_rate = sample_rate |
|
|
self.stft_params = STFTParams( |
|
|
window_length=window_length, |
|
|
hop_length=int(window_length * hop_factor), |
|
|
match_stride=True, |
|
|
) |
|
|
|
|
|
n_fft = window_length // 2 + 1 |
|
|
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] |
|
|
self.bands = bands |
|
|
|
|
|
ch = 32 |
|
|
convs = lambda: nn.ModuleList([ |
|
|
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)), |
|
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), |
|
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), |
|
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), |
|
|
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)), |
|
|
]) |
|
|
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) |
|
|
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False) |
|
|
|
|
|
def spectrogram(self, x): |
|
|
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params) |
|
|
x = torch.view_as_real(x.stft()) |
|
|
x = rearrange(x, "b 1 f t c -> (b 1) c t f") |
|
|
x_bands = [x[..., b[0] : b[1]] for b in self.bands] |
|
|
return x_bands |
|
|
|
|
|
def forward(self, x): |
|
|
x_bands = self.spectrogram(x) |
|
|
fmap = [] |
|
|
|
|
|
x = [] |
|
|
for band, stack in zip(x_bands, self.band_convs): |
|
|
for layer in stack: |
|
|
band = layer(band) |
|
|
fmap.append(band) |
|
|
x.append(band) |
|
|
|
|
|
x = torch.cat(x, dim=-1) |
|
|
x = self.conv_post(x) |
|
|
fmap.append(x) |
|
|
return fmap |
|
|
|
|
|
|
|
|
class Discriminator(ml.BaseModel): |
|
|
def __init__( |
|
|
self, |
|
|
rates: list = [], |
|
|
periods: list = [2, 3, 5, 7, 11], |
|
|
fft_sizes: list = [2048, 1024, 512], |
|
|
sample_rate: int = 44100, |
|
|
): |
|
|
"""Discriminator combining MPD, MSD, MRD and CQT. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
rates : list, optional |
|
|
Sampling rates for MSD, by default [] |
|
|
periods : list, optional |
|
|
Periods for MPD, by default [2, 3, 5, 7, 11] |
|
|
fft_sizes : list, optional |
|
|
FFT sizes for MRD, by default [2048, 1024, 512] |
|
|
sample_rate : int, optional |
|
|
Sampling rate of audio in Hz, by default 44100 |
|
|
""" |
|
|
super().__init__() |
|
|
discs = [] |
|
|
|
|
|
discs += [MPD(p) for p in periods] |
|
|
discs += [MSD(r, sample_rate=sample_rate) for r in rates] |
|
|
|
|
|
|
|
|
discs += [MRD(f, sample_rate=sample_rate) for f in fft_sizes] |
|
|
discs += [MultiScaleSubbandCQT(sample_rate=sample_rate)] |
|
|
|
|
|
self.discriminators = nn.ModuleList(discs) |
|
|
|
|
|
def preprocess(self, y): |
|
|
|
|
|
y = y - y.mean(dim=-1, keepdims=True) |
|
|
|
|
|
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9) |
|
|
return y |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.preprocess(x) |
|
|
fmaps = [d(x) for d in self.discriminators] |
|
|
return fmaps |