See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-3B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- bdd8a35f55f25533_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/bdd8a35f55f25533_train_data.json
type:
field_input: original_version
field_instruction: title
field_output: french_version
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/8d2e89e7-9f4b-4702-ae4c-8d1cc863cb26
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00025
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2760
micro_batch_size: 4
mlflow_experiment_name: /tmp/bdd8a35f55f25533_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 117bcf8a-89aa-4e58-88c4-fd9dde22f122
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 117bcf8a-89aa-4e58-88c4-fd9dde22f122
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8d2e89e7-9f4b-4702-ae4c-8d1cc863cb26
This model is a fine-tuned version of unsloth/Qwen2.5-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8278
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2760
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0386 | 0.0003 | 1 | 1.1236 |
1.142 | 0.0343 | 100 | 0.9476 |
1.1331 | 0.0686 | 200 | 0.9250 |
1.0164 | 0.1029 | 300 | 0.9124 |
0.7867 | 0.1372 | 400 | 0.9005 |
0.9931 | 0.1715 | 500 | 0.8936 |
0.9221 | 0.2058 | 600 | 0.8876 |
0.9674 | 0.2401 | 700 | 0.8808 |
0.8076 | 0.2744 | 800 | 0.8757 |
1.2683 | 0.3087 | 900 | 0.8702 |
1.0743 | 0.3431 | 1000 | 0.8658 |
1.0382 | 0.3774 | 1100 | 0.8619 |
0.8643 | 0.4117 | 1200 | 0.8574 |
0.7861 | 0.4460 | 1300 | 0.8534 |
0.8088 | 0.4803 | 1400 | 0.8501 |
0.802 | 0.5146 | 1500 | 0.8461 |
1.159 | 0.5489 | 1600 | 0.8436 |
0.8837 | 0.5832 | 1700 | 0.8403 |
1.0334 | 0.6175 | 1800 | 0.8375 |
0.9367 | 0.6518 | 1900 | 0.8353 |
1.0622 | 0.6861 | 2000 | 0.8333 |
0.9135 | 0.7204 | 2100 | 0.8319 |
0.8457 | 0.7547 | 2200 | 0.8304 |
0.6793 | 0.7890 | 2300 | 0.8294 |
0.8514 | 0.8233 | 2400 | 0.8286 |
0.8636 | 0.8576 | 2500 | 0.8282 |
0.9369 | 0.8919 | 2600 | 0.8279 |
0.9562 | 0.9262 | 2700 | 0.8278 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support