finetune_colpali-v1_3-4bit_v2

This model is a fine-tuned version of vidore/colpaligemma-3b-pt-448-base on the RowekBrah/ColPali_ann_rep_v2_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0670
  • Model Preparation Time: 0.0056

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time
No log 0.0012 1 0.2103 0.0056
0.4896 0.1238 100 0.1170 0.0056
0.5575 0.2476 200 0.0940 0.0056
0.3973 0.3714 300 0.0920 0.0056
0.4478 0.4952 400 0.0836 0.0056
0.2364 0.6190 500 0.0808 0.0056
0.2158 0.7428 600 0.0742 0.0056
0.339 0.8666 700 0.0700 0.0056
0.2052 0.9904 800 0.0704 0.0056
0.1546 1.1151 900 0.0672 0.0056
0.2003 1.2389 1000 0.0672 0.0056
0.1242 1.3627 1100 0.0676 0.0056
0.283 1.4865 1200 0.0674 0.0056

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RowekBrah/finetune_colpali-v1_3-4bit_v2

Finetuned
(42)
this model