finetune_colpali-v1_3-4bit_v2
This model is a fine-tuned version of vidore/colpaligemma-3b-pt-448-base on the RowekBrah/ColPali_ann_rep_v2_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0670
- Model Preparation Time: 0.0056
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.5
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
---|---|---|---|---|
No log | 0.0012 | 1 | 0.2103 | 0.0056 |
0.4896 | 0.1238 | 100 | 0.1170 | 0.0056 |
0.5575 | 0.2476 | 200 | 0.0940 | 0.0056 |
0.3973 | 0.3714 | 300 | 0.0920 | 0.0056 |
0.4478 | 0.4952 | 400 | 0.0836 | 0.0056 |
0.2364 | 0.6190 | 500 | 0.0808 | 0.0056 |
0.2158 | 0.7428 | 600 | 0.0742 | 0.0056 |
0.339 | 0.8666 | 700 | 0.0700 | 0.0056 |
0.2052 | 0.9904 | 800 | 0.0704 | 0.0056 |
0.1546 | 1.1151 | 900 | 0.0672 | 0.0056 |
0.2003 | 1.2389 | 1000 | 0.0672 | 0.0056 |
0.1242 | 1.3627 | 1100 | 0.0676 | 0.0056 |
0.283 | 1.4865 | 1200 | 0.0674 | 0.0056 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for RowekBrah/finetune_colpali-v1_3-4bit_v2
Base model
google/paligemma-3b-pt-448
Finetuned
vidore/colpaligemma-3b-pt-448-base