The mt5-large model has been finetuned with the data from Uber corpus in Ukrainian.

The dataset contains around 40K articles about politics, science, technology, social life collected until December 2021 from Hromadske.ua.

Load the model and mt tokenizer :
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("google/mt5-large")

model = AutoModelForSeq2SeqLM.from_pretrained("SGaleshchuk/t5-large-ua-news")

summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, framework="pt")
##### Try on your example

summary = summarizer("15 листопада чисельність населення Землі досягла восьми мільярдів, повідомляє ООН. Зазначають, що нашій планеті знадобилося лише 11 років, щоб вирости з семи до восьми мільярдів. Таке зростання ООН пояснила поступовим збільшенням тривалості життя людини завдяки поліпшенню охорони здоров'я, харчування, особистої гігієни та медицини. Це також результат високого та постійного рівня народжуваності в деяких країнах.", min_length=3, max_length = 128)
print(summary)
[{'summary_text': 'Чисельність населення Землі зросла до восьми мільярдів. '}]
Downloads last month
22
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.