Edit model card

Text-to-image finetuning - Sajid121/OUtput_result

This pipeline was finetuned from CompVis/stable-diffusion-v1-4 on the Sajid121/Bevgen2 dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ["['A topdown bird eye view of a car on a road with lanes and pedestrain on sides']"]:

val_imgs_grid

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("Sajid121/OUtput_result", torch_dtype=torch.float16)
prompt = "['A topdown bird eye view of a car on a road with lanes and pedestrain on sides']"
image = pipeline(prompt).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 125
  • Learning rate: 1e-05
  • Batch size: 1
  • Gradient accumulation steps: 4
  • Image resolution: 512
  • Mixed-precision: fp16

Intended uses & limitations

How to use

# TODO: add an example code snippet for running this diffusion pipeline

Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

Training details

[TODO: describe the data used to train the model]

Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sajid121/OUtput_result

Finetuned
(930)
this model