SakaiSec/ATLAS-8B-Thinking-Q4_K_M-GGUF
This model was converted to GGUF format from Arc-Intelligence/ATLAS-8B-Thinking
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo SakaiSec/ATLAS-8B-Thinking-Q4_K_M-GGUF --hf-file atlas-8b-thinking-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo SakaiSec/ATLAS-8B-Thinking-Q4_K_M-GGUF --hf-file atlas-8b-thinking-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo SakaiSec/ATLAS-8B-Thinking-Q4_K_M-GGUF --hf-file atlas-8b-thinking-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo SakaiSec/ATLAS-8B-Thinking-Q4_K_M-GGUF --hf-file atlas-8b-thinking-q4_k_m.gguf -c 2048
- Downloads last month
- 137
Hardware compatibility
Log In
to view the estimation
4-bit
Model tree for SakaiSec/ATLAS-8B-Thinking-Q4_K_M-GGUF
Dataset used to train SakaiSec/ATLAS-8B-Thinking-Q4_K_M-GGUF
Evaluation results
- Non-Degradation Rate on Arc-Intelligence/Arc-ATLAS-Teach-v0self-reported97%
- Average Accuracy Improvement on Arc-Intelligence/Arc-ATLAS-Teach-v0self-reported+15.7%
- Task Completion Rate Improvement on Arc-Intelligence/Arc-ATLAS-Teach-v0self-reported+31.2%
- Response Token Reduction on Arc-Intelligence/Arc-ATLAS-Teach-v0self-reported-37.2%