SweRankEmbed-Large
is a 7B bi-encoder for code retrieval. It significantly outperforms other embedding models on the issue localization task.
The model has been trained on large-scale issue localization data collected from public python github repositories. Check out our blog post and paper for more details!
You can combine SweRankEmbed
with our SweRankLLM-Small
or SweRankLLM-Large
rerankers for even higher quality ranking performance.
Link to code: https://github.com/gangiswag/SweRank
Performance
SweRank models show SOTA localization performance on a variety of benchmarks like SWE-Bench-Lite and LocBench, considerably out-performing agent-based approaches relying on Claude-3.5
Model Name | SWE-Bench-Lite Func@10 | LocBench Func@15 |
---|---|---|
OpenHands (Claude 3.5) | 70.07 | 59.29 |
LocAgent (Claude 3.5) | 77.37 | 60.71 |
CodeRankEmbed (137M) | 58.76 | 50.89 |
GTE-Qwen2-7B-Instruct (7B) | 70.44 | 57.14 |
SweRankEmbed-Small (137M) | 74.45 | 63.39 |
SweRankEmbed-Large (7B) | 82.12 | 67.32 |
+ GPT-4.1 reranker | 87.96 | 74.64 |
+ SweRankLLM-Small (7B) reranker | 86.13 | 74.46 |
+ SweRankLLM-Large (32B) reranker | 88.69 | 76.25 |
Requirements
transformers>=4.39.2
flash_attn>=2.5.6
Usage with Sentence-Transformers
from from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Salesforce/SweRankEmbed-Large", trust_remote_code=True)
# In case you want to reduce the maximum length:
model.max_seq_length = 8192
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)
scores = query_embeddings @ document_embeddings.T
for query, query_scores in zip(queries, scores):
doc_score_pairs = list(zip(documents, query_scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
# Output passages & scores
print("Query:", query)
for document, score in doc_score_pairs:
print(score, document)
Observe the config_sentence_transformers.json
to see all pre-built prompt names.
Usage with Huggingface Transformers
Important: the query prompt must include the following task instruction prefix: "*Instruct: Given a github issue, identify the code that needs to be changed to fix the issue.\nQuery: *"
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a github issue, identify the code that needs to be changed to fix the issue.'
tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Large', trust_remote_code=True)
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Large', trust_remote_code=True)
model.eval()
max_length = 8192
queries = ['Calculate the n-th factorial']
queries_with_prefix = [get_detailed_instruct(task, query) for query in queries]
query_inputs = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
documents = ['def fact(n):\n if n < 0:\n raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_inputs = tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
# Compute token embeddings
with torch.no_grad():
query_embeddings = last_token_pool(model(**query_inputs).last_hidden_state, query_inputs["attention_mask"]])
document_embeddings = last_token_pool(model(**document_inputs).last_hidden_state, document_inputs["attention_mask"]])
# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)
scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
doc_score_pairs = list(zip(documents, query_scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
print("Query:", query)
for document, score in doc_score_pairs:
print(score, document)
Citation
If you find this model work useful in your research, please consider citing our paper:
@article{reddy2025swerank,
title={SweRank: Software Issue Localization with Code Ranking},
author={Reddy, Revanth Gangi and Suresh, Tarun and Doo, JaeHyeok and Liu, Ye and Nguyen, Xuan Phi and Zhou, Yingbo and Yavuz, Semih and Xiong, Caiming and Ji, Heng and Joty, Shafiq},
journal={arXiv preprint arXiv:2505.07849},
year={2025}
}
- Downloads last month
- 0
Model tree for Salesforce/SweRankEmbed-Large
Base model
Alibaba-NLP/gte-Qwen2-7B-instruct