distilbert-Nepali-NER

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2917
  • Precision: 0.0843
  • Recall: 0.0538
  • F1: 0.0657
  • Accuracy: 0.9259

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
No log 0.92 200 0.8685 0.0 0.4700 0.0 0.0
No log 1.84 400 0.8984 0.0135 0.3581 0.0556 0.0077
0.4549 2.76 600 0.9087 0.0361 0.3188 0.0833 0.0231
0.4549 3.69 800 0.9111 0.0460 0.3040 0.0909 0.0308
0.2088 4.61 1000 0.9173 0.0396 0.2972 0.0556 0.0308
0.2088 5.53 1200 0.3065 0.0721 0.0615 0.0664 0.9100
0.2088 6.45 1400 0.2924 0.1724 0.0769 0.1064 0.9212
0.1601 7.37 1600 0.2929 0.0745 0.0538 0.0625 0.9234
0.1601 8.29 1800 0.2903 0.0893 0.0385 0.0538 0.9257
0.1114 9.22 2000 0.2917 0.0843 0.0538 0.0657 0.9259

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
12
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Saugatkafley/distilbert-Nepali-NER

Finetuned
(7319)
this model