distilbert-Nepali-NER
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2917
- Precision: 0.0843
- Recall: 0.0538
- F1: 0.0657
- Accuracy: 0.9259
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 0.92 | 200 | 0.8685 | 0.0 | 0.4700 | 0.0 | 0.0 |
No log | 1.84 | 400 | 0.8984 | 0.0135 | 0.3581 | 0.0556 | 0.0077 |
0.4549 | 2.76 | 600 | 0.9087 | 0.0361 | 0.3188 | 0.0833 | 0.0231 |
0.4549 | 3.69 | 800 | 0.9111 | 0.0460 | 0.3040 | 0.0909 | 0.0308 |
0.2088 | 4.61 | 1000 | 0.9173 | 0.0396 | 0.2972 | 0.0556 | 0.0308 |
0.2088 | 5.53 | 1200 | 0.3065 | 0.0721 | 0.0615 | 0.0664 | 0.9100 |
0.2088 | 6.45 | 1400 | 0.2924 | 0.1724 | 0.0769 | 0.1064 | 0.9212 |
0.1601 | 7.37 | 1600 | 0.2929 | 0.0745 | 0.0538 | 0.0625 | 0.9234 |
0.1601 | 8.29 | 1800 | 0.2903 | 0.0893 | 0.0385 | 0.0538 | 0.9257 |
0.1114 | 9.22 | 2000 | 0.2917 | 0.0843 | 0.0538 | 0.0657 | 0.9259 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Saugatkafley/distilbert-Nepali-NER
Base model
distilbert/distilbert-base-uncased