metadata
library_name: peft
license: mit
datasets:
- multi_nli
- snli
language:
- en
metrics:
- spearmanr
AnglE📐: Angle-optimized Text Embeddings
It is Angle 📐, not Angel 👼.
🔥 A New SOTA Model for Semantic Textual Similarity!
Github: https://github.com/SeanLee97/AnglE
STS Results
Model | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. |
---|---|---|---|---|---|---|---|---|
SeanLee97/angle-llama-7b-nli-20231027 | 78.68 | 90.58 | 85.49 | 89.56 | 86.91 | 88.92 | 81.18 | 85.90 |
SeanLee97/angle-llama-7b-nli-v2 | 79.00 | 90.56 | 85.79 | 89.43 | 87.00 | 88.97 | 80.94 | 85.96 |
Usage
- use AnglE
python -m pip install -U angle-emb
from angle_emb import AnglE, Prompts
# init
angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf', pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2')
# set prompt
print('All predefined prompts:', Prompts.list_prompts())
angle.set_prompt(prompt=Prompts.A)
print('prompt:', angle.prompt)
# encode text
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
- use transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
peft_model_id = 'SeanLee97/angle-llama-7b-nli-20231027'
config = PeftConfig.from_pretrained(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path).bfloat16().cuda()
model = PeftModel.from_pretrained(model, peft_model_id).cuda()
def decorate_text(text: str):
return f'Summarize sentence "{text}" in one word:"'
inputs = 'hello world!'
tok = tokenizer([decorate_text(inputs)], return_tensors='pt')
for k, v in tok.items():
tok[k] = v.cuda()
vec = model(output_hidden_states=True, **tok).hidden_states[-1][:, -1].float().detach().cpu().numpy()
print(vec)
Citation
You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:
@article{li2023angle,
title={AnglE-Optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}