t5-small-billsum / README.md
Sebastian-18's picture
Update README.md
5cc5144 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-small-billsum
    results: []

t5-small-billsum

This model is a fine-tuned version of google-t5/t5-small on Billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3195
  • Rouge1: 0.205
  • Rouge2: 0.0994
  • Rougel: 0.1708
  • Rougelsum: 0.1704
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

  • Research: Explore summarization performance of small models on long-text datasets like BillSum.

  • Applications: Legislative bill summarization (short drafts), document compression.

Not intended for production without further fine-tuning and testing.

  • Short outputs: Current fine-tuning capped at 20 tokens → summaries are incomplete.

  • Model size: T5-small struggles with very long inputs (BillSum often >512 tokens).

  • Performance: ROUGE scores (~0.20) are well below state-of-the-art.

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 62 2.7672 0.139 0.0457 0.114 0.1141 20.0
No log 2.0 124 2.5470 0.148 0.0535 0.121 0.1209 20.0
No log 3.0 186 2.4587 0.16 0.0645 0.1316 0.1311 20.0
No log 4.0 248 2.4068 0.1849 0.0833 0.1541 0.1541 20.0
No log 5.0 310 2.3747 0.1994 0.0945 0.1666 0.1663 20.0
No log 6.0 372 2.3537 0.2032 0.0976 0.1686 0.1683 20.0
No log 7.0 434 2.3364 0.203 0.0973 0.1694 0.169 20.0
No log 8.0 496 2.3259 0.2045 0.0984 0.1704 0.1701 20.0
2.7564 9.0 558 2.3217 0.2052 0.0997 0.1709 0.1704 20.0
2.7564 10.0 620 2.3195 0.205 0.0994 0.1708 0.1704 20.0

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4