bc-erniem-isedsc01 / README.md
xuandin's picture
Update README.md
3a80496 verified
---
language:
- vi
library_name: transformers
license: mit
pipeline_tag: text-classification
tags:
- SemViQA
- binary-classification
- fact-checking
---
# SemViQA-BC: Vietnamese Binary Classification for Claim Verification
## Model Description
**SemViQA-BC** is a core component of the **SemViQA** system, specifically designed for **binary classification** in Vietnamese fact-checking tasks. This model predicts whether a given claim is **SUPPORTED** or **REFUTED** based on retrieved evidence.
### **Model Information**
- **Developed by:** [SemViQA Research Team](https://huggingface.co/SemViQA)
- **Fine-tuned model:** [Ernie-M](https://huggingface.co/MoritzLaurer/ernie-m-large-mnli-xnli)
- **Supported Language:** Vietnamese
- **Task:** Binary Classification (Fact Verification)
- **Dataset:** [ISE-DSC01](https://codalab.lisn.upsaclay.fr/competitions/15497)
SemViQA-BC is one of the key components of the two-step classification (TVC) approach in the SemViQA system. It focuses on binary classification, determining whether a claim is SUPPORTED or REFUTED. This step follows an initial three-class classification, where claims are first categorized as SUPPORTED, REFUTED, or NOT ENOUGH INFORMATION (NEI). By incorporating Cross-Entropy Loss and Focal Loss, SemViQA-BC enhances precision in claim verification, ensuring more accurate fact-checking results
## Usage Example
Direct Model Usage
```Python
# Install semviqa
!pip install semviqa
# Initalize a pipeline
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from semviqa.tvc.model import ClaimModelForClassification
tokenizer = AutoTokenizer.from_pretrained("SemViQA/bc-erniem-isedsc01")
model = ClaimModelForClassification.from_pretrained("SemViQA/bc-erniem-isedsc01", num_labels=2)
claim = "Chiแบฟn tranh vแป›i Campuchia ฤ‘รฃ kแบฟt thรบc trฦฐแป›c khi Viแป‡t Nam thแป‘ng nhแบฅt."
evidence = "Sau khi thแป‘ng nhแบฅt, Viแป‡t Nam tiแบฟp tแปฅc gแบทp khรณ khฤƒn do sแปฑ sแปฅp ฤ‘แป• vร  tan rรฃ cแปงa ฤ‘แป“ng minh Liรชn Xรด cรนng Khแป‘i phรญa ฤรดng, cรกc lแป‡nh cแบฅm vแบญn cแปงa Hoa Kแปณ, chiแบฟn tranh vแป›i Campuchia, biรชn giแป›i giรกp Trung Quแป‘c vร  hแบญu quแบฃ cแปงa chรญnh sรกch bao cแบฅp sau nhiแปu nฤƒm รกp dแปฅng."
inputs = tokenizer(
claim,
evidence,
truncation="only_second",
add_special_tokens=True,
max_length=256,
padding='max_length',
return_attention_mask=True,
return_token_type_ids=False,
return_tensors='pt',
)
labels = ["SUPPORTED", "REFUTED"]
with torch.no_grad():
outputs = model(**inputs)
logits = outputs["logits"]
probabilities = F.softmax(logits, dim=1).squeeze()
for i, (label, prob) in enumerate(zip(labels, probabilities.tolist()), start=1):
print(f"{i}) {label} {prob:.4f}")
# 1) SUPPORTED 0.0007
# 2) REFUTED 0.9993
```
## **Evaluation Results**
SemViQA-BC achieved impressive results on the test set, demonstrating accurate and efficient classification capabilities. The detailed evaluation of SemViQA-BC is presented in the table below.
<table>
<thead>
<tr>
<th colspan="2">Method</th>
<th colspan="4">ISE-DSC01</th>
</tr>
<tr>
<th>ER</th>
<th>VC</th>
<th>Strict Acc</th>
<th>VC Acc</th>
<th>ER Acc</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">TF-IDF</td>
<td>InfoXLM<sub>large</sub></td>
<td>73.59</td>
<td>78.08</td>
<td>76.61</td>
<td>378</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>75.61</td>
<td>80.50</td>
<td>78.58</td>
<td>366</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td>78.19</td>
<td>81.69</td>
<td>80.65</td>
<td>403</td>
</tr>
<tr>
<td rowspan="3">BM25</td>
<td>InfoXLM<sub>large</sub></td>
<td>72.09</td>
<td>77.37</td>
<td>75.04</td>
<td>320</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>73.94</td>
<td>79.37</td>
<td>76.95</td>
<td>333</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td>76.58</td>
<td>80.76</td>
<td>79.02</td>
<td>381</td>
</tr>
<tr>
<td rowspan="3">SBert</td>
<td>InfoXLM<sub>large</sub></td>
<td>71.20</td>
<td>76.59</td>
<td>74.15</td>
<td>915</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>72.85</td>
<td>78.78</td>
<td>75.89</td>
<td>835</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td>75.46</td>
<td>79.89</td>
<td>77.91</td>
<td>920</td>
</tr>
<tr>
<th colspan="1">QA-based approaches</th>
<th colspan="1">VC</th>
<th colspan="4"></th>
</tr>
<tr>
<td rowspan="3">ViMRC<sub>large</sub></td>
<td>InfoXLM<sub>large</sub></td>
<td>54.36</td>
<td>64.14</td>
<td>56.84</td>
<td>9798</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>53.98</td>
<td>66.70</td>
<td>57.77</td>
<td>9809</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td>56.62</td>
<td>62.19</td>
<td>58.91</td>
<td>9833</td>
</tr>
<tr>
<td rowspan="3">InfoXLM<sub>large</sub></td>
<td>InfoXLM<sub>large</sub></td>
<td>53.50</td>
<td>63.83</td>
<td>56.17</td>
<td>10057</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>53.32</td>
<td>66.70</td>
<td>57.25</td>
<td>10066</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td>56.34</td>
<td>62.36</td>
<td>58.69</td>
<td>10078</td>
</tr>
<tr>
<th colspan="2">LLM</th>
<th colspan="4"></th>
</tr>
<tr>
<td colspan="2">Qwen2.5-1.5B-Instruct</td>
<td>59.23</td>
<td>66.68</td>
<td>65.51</td>
<td>19780</td>
</tr>
<tr>
<td colspan="2">Qwen2.5-3B-Instruct</td>
<td>60.87</td>
<td>66.92</td>
<td>66.10</td>
<td>31284</td>
</tr>
<tr>
<th colspan="1">LLM</th>
<th colspan="1">VC</th>
<th colspan="4"></th>
</tr>
<tr>
<td rowspan="3">Qwen2.5-1.5B-Instruct</td>
<td>InfoXLM<sub>large</sub></td>
<td>64.40</td>
<td>68.37</td>
<td>66.49</td>
<td>19970</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>64.66</td>
<td>69.63</td>
<td>66.72</td>
<td>19976</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td>65.70</td>
<td>68.37</td>
<td>67.33</td>
<td>20003</td>
</tr>
<tr>
<td rowspan="3">Qwen2.5-3B-Instruct</td>
<td>InfoXLM<sub>large</sub></td>
<td>65.72</td>
<td>69.66</td>
<td>67.51</td>
<td>31477</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>66.12</td>
<td>70.44</td>
<td>67.83</td>
<td>31483</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td>67.48</td>
<td>70.77</td>
<td>68.75</td>
<td>31512</td>
</tr>
<tr>
<th colspan="1">SER Faster (ours)</th>
<th colspan="1">TVC (ours)</th>
<th colspan="4"></th>
</tr>
<tr>
<td>TF-IDF + ViMRC<sub>large</sub></td>
<td>Ernie-M<sub>large</sub></td>
<td style="color:blue">78.32</td>
<td style="color:blue">81.91</td>
<td style="color:blue">80.26</td>
<td style="color:blue">995</td>
</tr>
<tr>
<td>TF-IDF + InfoXLM<sub>large</sub></td>
<td>Ernie-M<sub>large</sub></td>
<td style="color:blue">78.37</td>
<td style="color:blue">81.91</td>
<td style="color:blue">80.32</td>
<td style="color:blue">925</td>
</tr>
<tr>
<th colspan="1">SER (ours)</th>
<th colspan="1">TVC (ours)</th>
<th colspan="4"></th>
</tr>
<tr>
<td rowspan="3">TF-IDF + ViMRC<sub>large</sub></td>
<td>InfoXLM<sub>large</sub></td>
<td>75.13</td>
<td>79.54</td>
<td>76.87</td>
<td>5191</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>76.71</td>
<td>81.65</td>
<td>78.91</td>
<td>5219</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td><strong>78.97</strong></td>
<td><strong>82.54</strong></td>
<td><strong>80.91</strong></td>
<td>5225</td>
</tr>
<tr>
<td rowspan="3">TF-IDF + InfoXLM<sub>large</sub></td>
<td>InfoXLM<sub>large</sub></td>
<td>75.13</td>
<td>79.60</td>
<td>76.87</td>
<td>5175</td>
</tr>
<tr>
<td>XLM-R<sub>large</sub></td>
<td>76.74</td>
<td>81.71</td>
<td>78.95</td>
<td>5200</td>
</tr>
<tr>
<td>Ernie-M<sub>large</sub></td>
<td><strong>78.97</strong></td>
<td>82.49</td>
<td><strong>80.91</strong></td>
<td>5297</td>
</tr>
</tbody>
</table>
## **Citation**
If you use **SemViQA-BC** in your research, please cite:
```bibtex
@misc{tran2025semviqasemanticquestionanswering,
title={SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking},
author={Dien X. Tran and Nam V. Nguyen and Thanh T. Tran and Anh T. Hoang and Tai V. Duong and Di T. Le and Phuc-Lu Le},
year={2025},
eprint={2503.00955},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.00955},
}
```
๐Ÿ”— **Paper Link:** [SemViQA on arXiv](https://arxiv.org/abs/2503.00955)
๐Ÿ”— **Source Code:** [GitHub - SemViQA](https://github.com/DAVID-NGUYEN-S16/SemViQA)
## About
*Built by Dien X. Tran*
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Profile-blue?logo=linkedin)](https://www.linkedin.com/in/xndien2004/)
For more details, visit the project repository.
[![GitHub stars](https://img.shields.io/github/stars/DAVID-NGUYEN-S16/SemViQA?style=social)](https://github.com/DAVID-NGUYEN-S16/SemViQA)