|
--- |
|
language: |
|
- vi |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
license: mit |
|
tags: |
|
- SemViQA |
|
- binary-classification |
|
- fact-checking |
|
--- |
|
|
|
# SemViQA-BC: Vietnamese Binary Classification for Claim Verification |
|
|
|
## Model Description |
|
|
|
**SemViQA-BC** is a core component of the **SemViQA** system, specifically designed for **binary classification** in Vietnamese fact-checking tasks. This model predicts whether a given claim is **SUPPORTED** or **REFUTED** based on retrieved evidence. |
|
|
|
### **Model Information** |
|
- **Developed by:** [SemViQA Research Team](https://huggingface.co/SemViQA) |
|
- **Fine-tuned model:** [InfoXLM](https://huggingface.co/microsoft/infoxlm-large) |
|
- **Supported Language:** Vietnamese |
|
- **Task:** Binary Classification (Fact Verification) |
|
- **Dataset:** [ViWikiFC](https://arxiv.org/abs/2405.07615) |
|
|
|
SemViQA-BC is one of the key components of the two-step classification (TVC) approach in the SemViQA system. It focuses on binary classification, determining whether a claim is SUPPORTED or REFUTED. This step follows an initial three-class classification, where claims are first categorized as SUPPORTED, REFUTED, or NOT ENOUGH INFORMATION (NEI). By incorporating Cross-Entropy Loss and Focal Loss, SemViQA-BC enhances precision in claim verification, ensuring more accurate fact-checking results |
|
|
|
## Usage Example |
|
|
|
Direct Model Usage |
|
```Python |
|
# Install semviqa |
|
!pip install semviqa |
|
|
|
# Initalize a pipeline |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer |
|
from semviqa.tvc.model import ClaimModelForClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("SemViQA/bc-infoxlm-viwikifc") |
|
model = ClaimModelForClassification.from_pretrained("SemViQA/bc-infoxlm-viwikifc", num_labels=2) |
|
claim = "Chiแบฟn tranh vแปi Campuchia ฤรฃ kแบฟt thรบc trฦฐแปc khi Viแปt Nam thแปng nhแบฅt." |
|
evidence = "Sau khi thแปng nhแบฅt, Viแปt Nam tiแบฟp tแปฅc gแบทp khรณ khฤn do sแปฑ sแปฅp ฤแป vร tan rรฃ cแปงa ฤแปng minh Liรชn Xรด cรนng Khแปi phรญa ฤรดng, cรกc lแปnh cแบฅm vแบญn cแปงa Hoa Kแปณ, chiแบฟn tranh vแปi Campuchia, biรชn giแปi giรกp Trung Quแปc vร hแบญu quแบฃ cแปงa chรญnh sรกch bao cแบฅp sau nhiแปu nฤm รกp dแปฅng." |
|
|
|
inputs = tokenizer( |
|
claim, |
|
evidence, |
|
truncation="only_second", |
|
add_special_tokens=True, |
|
max_length=256, |
|
padding='max_length', |
|
return_attention_mask=True, |
|
return_token_type_ids=False, |
|
return_tensors='pt', |
|
) |
|
|
|
labels = ["SUPPORTED", "REFUTED"] |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
logits = outputs["logits"] |
|
probabilities = F.softmax(logits, dim=1).squeeze() |
|
|
|
for i, (label, prob) in enumerate(zip(labels, probabilities.tolist()), start=1): |
|
print(f"{i}) {label} {prob:.4f}") |
|
# 1) SUPPORTED 0.0001 |
|
# 2) REFUTED 0.9999 |
|
``` |
|
|
|
## **Evaluation Results** |
|
|
|
SemViQA-BC achieved impressive results on the test set, demonstrating accurate and efficient classification capabilities. The detailed evaluation of SemViQA-BC is presented in the table below. |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th colspan="2">Method</th> |
|
<th colspan="4">ViWikiFC</th> |
|
</tr> |
|
<tr> |
|
<th>ER</th> |
|
<th>VC</th> |
|
<th>Strict Acc</th> |
|
<th>VC Acc</th> |
|
<th>ER Acc</th> |
|
<th>Time (s)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="3">TF-IDF</td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>75.56</td> |
|
<td>82.21</td> |
|
<td>90.15</td> |
|
<td>131</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td>76.47</td> |
|
<td>82.78</td> |
|
<td>90.15</td> |
|
<td>134</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>75.56</td> |
|
<td>81.83</td> |
|
<td>90.15</td> |
|
<td>144</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">BM25</td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>70.44</td> |
|
<td>79.01</td> |
|
<td>83.50</td> |
|
<td>130</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td>70.97</td> |
|
<td>78.91</td> |
|
<td>83.50</td> |
|
<td>132</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>70.21</td> |
|
<td>78.29</td> |
|
<td>83.50</td> |
|
<td>141</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">SBert</td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>74.99</td> |
|
<td>81.59</td> |
|
<td>89.72</td> |
|
<td>195</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td>75.80</td> |
|
<td>82.35</td> |
|
<td>89.72</td> |
|
<td>194</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>75.13</td> |
|
<td>81.44</td> |
|
<td>89.72</td> |
|
<td>203</td> |
|
</tr> |
|
<tr> |
|
<th colspan="1">QA-based approaches</th> |
|
<th colspan="1">VC</th> |
|
<th colspan="4"></th> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">ViMRC<sub>large</sub></td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>77.28</td> |
|
<td>81.97</td> |
|
<td>92.49</td> |
|
<td>3778</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td>78.29</td> |
|
<td>82.83</td> |
|
<td>92.49</td> |
|
<td>3824</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>77.38</td> |
|
<td>81.92</td> |
|
<td>92.49</td> |
|
<td>3785</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">InfoXLM<sub>large</sub></td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>78.14</td> |
|
<td>82.07</td> |
|
<td>93.45</td> |
|
<td>4092</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td>79.20</td> |
|
<td>83.07</td> |
|
<td>93.45</td> |
|
<td>4096</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>78.24</td> |
|
<td>82.21</td> |
|
<td>93.45</td> |
|
<td>4102</td> |
|
</tr> |
|
<tr> |
|
<th colspan="2">LLM</th> |
|
<th colspan="4"></th> |
|
</tr> |
|
<tr> |
|
<td colspan="2">Qwen2.5-1.5B-Instruct</td> |
|
<td>51.03</td> |
|
<td>65.18</td> |
|
<td>78.96</td> |
|
<td>7665</td> |
|
</tr> |
|
<tr> |
|
<td colspan="2">Qwen2.5-3B-Instruct</td> |
|
<td>44.38</td> |
|
<td>62.31</td> |
|
<td>71.35</td> |
|
<td>12123</td> |
|
</tr> |
|
<tr> |
|
<th colspan="1">LLM</th> |
|
<th colspan="1">VC</th> |
|
<th colspan="4"></th> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">Qwen2.5-1.5B-Instruct</td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>66.14</td> |
|
<td>76.47</td> |
|
<td>78.96</td> |
|
<td>7788</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td>67.67</td> |
|
<td>78.10</td> |
|
<td>78.96</td> |
|
<td>7789</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>66.52</td> |
|
<td>76.52</td> |
|
<td>78.96</td> |
|
<td>7794</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">Qwen2.5-3B-Instruct</td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>59.88</td> |
|
<td>72.50</td> |
|
<td>71.35</td> |
|
<td>12246</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td>60.74</td> |
|
<td>73.08</td> |
|
<td>71.35</td> |
|
<td>12246</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>60.02</td> |
|
<td>72.21</td> |
|
<td>71.35</td> |
|
<td>12251</td> |
|
</tr> |
|
<tr> |
|
<th colspan="1">SER Faster (ours)</th> |
|
<th colspan="1">TVC (ours)</th> |
|
<th colspan="4"></th> |
|
</tr> |
|
<tr> |
|
<td>TF-IDF + ViMRC<sub>large</sub></td> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td style="color:blue">79.44</td> |
|
<td style="color:blue">82.93</td> |
|
<td style="color:blue">94.60</td> |
|
<td style="color:blue">410</td> |
|
</tr> |
|
<tr> |
|
<td>TF-IDF + InfoXLM<sub>large</sub></td> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td style="color:blue">79.77</td> |
|
<td style="color:blue">83.07</td> |
|
<td style="color:blue">95.03</td> |
|
<td style="color:blue">487</td> |
|
</tr> |
|
<tr> |
|
<th colspan="1">SER (ours)</th> |
|
<th colspan="1">TVC (ours)</th> |
|
<th colspan="4"></th> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">TF-IDF + ViMRC<sub>large</sub></td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>80.25</td> |
|
<td>83.84</td> |
|
<td>94.69</td> |
|
<td>2731</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td>80.34</td> |
|
<td>83.64</td> |
|
<td>94.69</td> |
|
<td>2733</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>79.53</td> |
|
<td>82.97</td> |
|
<td>94.69</td> |
|
<td>2733</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">TF-IDF + InfoXLM<sub>large</sub></td> |
|
<td>InfoXLM<sub>large</sub></td> |
|
<td>80.68</td> |
|
<td><strong>83.98</strong></td> |
|
<td><strong>95.31</strong></td> |
|
<td>3860</td> |
|
</tr> |
|
<tr> |
|
<td>XLM-R<sub>large</sub></td> |
|
<td><strong>80.82</strong></td> |
|
<td>83.88</td> |
|
<td><strong>95.31</strong></td> |
|
<td>3843</td> |
|
</tr> |
|
<tr> |
|
<td>Ernie-M<sub>large</sub></td> |
|
<td>80.06</td> |
|
<td>83.17</td> |
|
<td><strong>95.31</strong></td> |
|
<td>3891</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
## **Citation** |
|
|
|
If you use **SemViQA-BC** in your research, please cite: |
|
|
|
```bibtex |
|
@misc{tran2025semviqasemanticquestionanswering, |
|
title={SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking}, |
|
author={Dien X. Tran and Nam V. Nguyen and Thanh T. Tran and Anh T. Hoang and Tai V. Duong and Di T. Le and Phuc-Lu Le}, |
|
year={2025}, |
|
eprint={2503.00955}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2503.00955}, |
|
} |
|
``` |
|
|
|
๐ **Paper Link:** [SemViQA on arXiv](https://arxiv.org/abs/2503.00955) |
|
๐ **Source Code:** [GitHub - SemViQA](https://github.com/DAVID-NGUYEN-S16/SemViQA) |
|
|
|
## About |
|
|
|
*Built by Dien X. Tran* |
|
[](https://www.linkedin.com/in/xndien2004/) |
|
For more details, visit the project repository. |
|
[](https://github.com/DAVID-NGUYEN-S16/SemViQA) |