bge-reranker-v2-m3-finetuned
This model is a fine-tuned version of BAAI/bge-reranker-v2-m3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0068
- Mse: 0.0068
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Mse |
---|---|---|---|---|
0.0221 | 0.0746 | 500 | 0.0107 | 0.0107 |
0.0162 | 0.1493 | 1000 | 0.0123 | 0.0123 |
0.0079 | 0.2239 | 1500 | 0.0077 | 0.0077 |
0.0104 | 0.2986 | 2000 | 0.0068 | 0.0068 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for Sengil/bge-reranker-v2-m3-finetuned
Base model
BAAI/bge-reranker-v2-m3