ResNet50-APTOS-DR-ONNX Model
This repository contains a ResNet50 model, originally trained for Diabetic Retinopathy (DR) detection on the APTOS dataset, exported to ONNX format for efficient inference.
Model Overview
- Architecture: ResNet50
- Task: Diabetic Retinopathy Classification (5 classes: No DR, Mild DR, Moderate DR, Severe DR, Proliferative DR)
- Format: ONNX (Opset 18)
Usage (ONNX Inference)
To use this model for inference, you will need the onnxruntime library. Below is a basic example:
import onnxruntime as ort
import numpy as np
from PIL import Image
from torchvision import transforms
ONNX_MODEL_PATH = "mithu-vit.onnx" # Path to the downloaded ONNX model
CLASSES = ["No DR", "Mild DR", "Moderate DR", "Severe DR", "Proliferative DR"]
# Image preprocessing (matching the training pipeline)
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def predict_image(image_path):
img = Image.open(image_path).convert('RGB')
input_tensor = preprocess(img)
input_numpy = input_tensor.unsqueeze(0).numpy() # Add batch dimension
session = ort.InferenceSession(ONNX_MODEL_PATH)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
outputs = session.run([output_name], {input_name: input_numpy})
logits = outputs[0][0]
probs = np.exp(logits) / np.sum(np.exp(logits))
pred_index = np.argmax(probs)
print(f"Predicted Class: {CLASSES[pred_index]} (Class {pred_index})")
print(f"Confidence: {probs[pred_index] * 100:.2f}%")
print("All Probabilities:")
for i, p in enumerate(probs):
print(f" {CLASSES[i]}: {p*100:.2f}%")
# Example usage:
# predict_image("path/to/your/image.jpg")
Fine-tuning
The original model was trained using PyTorch. If you wish to fine-tune this model on a custom dataset or for a slightly different task, you can use the original PyTorch weights (if available) or adapt the ONNX model for further training in a suitable framework.
Steps for fine-tuning generally involve:
- Load the pre-trained model: Start with the original PyTorch model or a version compatible with transfer learning.
- Prepare your dataset: Ensure your images are properly labeled and preprocessed (resized to 224x224, normalized with ImageNet stats).
- Modify the head: Replace the final classification layer to match the number of classes in your new dataset.
- Define optimizer and loss function: Choose appropriate settings for your fine-tuning task.
- Train: Fine-tune the model, typically with a lower learning rate than initial training, focusing on training the new head and potentially unfreezing earlier layers for more granular adjustments.
- Export to ONNX: After fine-tuning, export your updated model to ONNX format following similar steps to the original export process.