resultados

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2450
  • Accuracy: 0.9350
  • F1: 0.9345
  • Precision: 0.9383
  • Recall: 0.9350

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 185 3.0723 0.3166 0.2902 0.3034 0.3166
No log 2.0 370 1.1438 0.8850 0.8847 0.8924 0.8850
2.2334 3.0 555 0.3604 0.9229 0.9230 0.9266 0.9229
2.2334 4.0 740 0.2413 0.9350 0.9349 0.9383 0.9350
2.2334 5.0 925 0.2297 0.9323 0.9315 0.9349 0.9323
0.1102 6.0 1110 0.2163 0.9391 0.9390 0.9417 0.9391
0.1102 7.0 1295 0.2179 0.9364 0.9359 0.9395 0.9364
0.1102 8.0 1480 0.2164 0.9378 0.9373 0.9404 0.9378
0.0078 9.0 1665 0.2169 0.9364 0.9359 0.9392 0.9364
0.0078 10.0 1850 0.2214 0.9350 0.9345 0.9382 0.9350
0.003 11.0 2035 0.2225 0.9364 0.9359 0.9395 0.9364
0.003 12.0 2220 0.2252 0.9364 0.9359 0.9394 0.9364
0.003 13.0 2405 0.2265 0.9364 0.9359 0.9394 0.9364
0.0018 14.0 2590 0.2276 0.9350 0.9345 0.9383 0.9350
0.0018 15.0 2775 0.2308 0.9350 0.9345 0.9383 0.9350
0.0018 16.0 2960 0.2320 0.9364 0.9359 0.9394 0.9364
0.0012 17.0 3145 0.2327 0.9350 0.9345 0.9383 0.9350
0.0012 18.0 3330 0.2351 0.9350 0.9345 0.9383 0.9350
0.0009 19.0 3515 0.2364 0.9350 0.9345 0.9383 0.9350
0.0009 20.0 3700 0.2374 0.9350 0.9345 0.9383 0.9350
0.0009 21.0 3885 0.2386 0.9350 0.9345 0.9383 0.9350
0.0007 22.0 4070 0.2396 0.9350 0.9345 0.9383 0.9350
0.0007 23.0 4255 0.2412 0.9350 0.9345 0.9383 0.9350
0.0007 24.0 4440 0.2422 0.9350 0.9345 0.9383 0.9350
0.0006 25.0 4625 0.2429 0.9350 0.9345 0.9383 0.9350
0.0006 26.0 4810 0.2433 0.9350 0.9345 0.9383 0.9350
0.0006 27.0 4995 0.2440 0.9350 0.9345 0.9383 0.9350
0.0005 28.0 5180 0.2446 0.9350 0.9345 0.9383 0.9350
0.0005 29.0 5365 0.2449 0.9350 0.9345 0.9383 0.9350
0.0005 30.0 5550 0.2450 0.9350 0.9345 0.9383 0.9350

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
6
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Shedinja/vit-pet-classification

Finetuned
(871)
this model