resultados
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2450
- Accuracy: 0.9350
- F1: 0.9345
- Precision: 0.9383
- Recall: 0.9350
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 185 | 3.0723 | 0.3166 | 0.2902 | 0.3034 | 0.3166 |
No log | 2.0 | 370 | 1.1438 | 0.8850 | 0.8847 | 0.8924 | 0.8850 |
2.2334 | 3.0 | 555 | 0.3604 | 0.9229 | 0.9230 | 0.9266 | 0.9229 |
2.2334 | 4.0 | 740 | 0.2413 | 0.9350 | 0.9349 | 0.9383 | 0.9350 |
2.2334 | 5.0 | 925 | 0.2297 | 0.9323 | 0.9315 | 0.9349 | 0.9323 |
0.1102 | 6.0 | 1110 | 0.2163 | 0.9391 | 0.9390 | 0.9417 | 0.9391 |
0.1102 | 7.0 | 1295 | 0.2179 | 0.9364 | 0.9359 | 0.9395 | 0.9364 |
0.1102 | 8.0 | 1480 | 0.2164 | 0.9378 | 0.9373 | 0.9404 | 0.9378 |
0.0078 | 9.0 | 1665 | 0.2169 | 0.9364 | 0.9359 | 0.9392 | 0.9364 |
0.0078 | 10.0 | 1850 | 0.2214 | 0.9350 | 0.9345 | 0.9382 | 0.9350 |
0.003 | 11.0 | 2035 | 0.2225 | 0.9364 | 0.9359 | 0.9395 | 0.9364 |
0.003 | 12.0 | 2220 | 0.2252 | 0.9364 | 0.9359 | 0.9394 | 0.9364 |
0.003 | 13.0 | 2405 | 0.2265 | 0.9364 | 0.9359 | 0.9394 | 0.9364 |
0.0018 | 14.0 | 2590 | 0.2276 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0018 | 15.0 | 2775 | 0.2308 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0018 | 16.0 | 2960 | 0.2320 | 0.9364 | 0.9359 | 0.9394 | 0.9364 |
0.0012 | 17.0 | 3145 | 0.2327 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0012 | 18.0 | 3330 | 0.2351 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0009 | 19.0 | 3515 | 0.2364 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0009 | 20.0 | 3700 | 0.2374 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0009 | 21.0 | 3885 | 0.2386 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0007 | 22.0 | 4070 | 0.2396 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0007 | 23.0 | 4255 | 0.2412 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0007 | 24.0 | 4440 | 0.2422 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0006 | 25.0 | 4625 | 0.2429 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0006 | 26.0 | 4810 | 0.2433 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0006 | 27.0 | 4995 | 0.2440 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0005 | 28.0 | 5180 | 0.2446 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0005 | 29.0 | 5365 | 0.2449 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
0.0005 | 30.0 | 5550 | 0.2450 | 0.9350 | 0.9345 | 0.9383 | 0.9350 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Shedinja/vit-pet-classification
Base model
google/vit-base-patch16-224