|
import pandas as pd |
|
import numpy as np |
|
import joblib |
|
import gradio as gr |
|
import os |
|
import tempfile |
|
|
|
|
|
os.environ["GRADIO_TEMP"] = tempfile.mkdtemp() |
|
|
|
|
|
rf_model = joblib.load('rf_model.pkl') |
|
|
|
|
|
numeric_features = [ |
|
"date_numeric", "time_numeric", "door_state", "sphone_signal", "label" |
|
] |
|
|
|
|
|
class_labels = { |
|
0: "Normal", |
|
1: "Backdoor", |
|
2: "DDoS", |
|
3: "Injection", |
|
4: "Password Attack", |
|
5: "Ransomware", |
|
6: "Scanning", |
|
7: "XSS", |
|
} |
|
|
|
def convert_datetime_features(log_data): |
|
"""Convert date and time into numeric values.""" |
|
try: |
|
log_data['date'] = pd.to_datetime(log_data['date'], format='%d-%m-%y', errors='coerce') |
|
log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9 |
|
|
|
time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce') |
|
log_data['time_numeric'] = (time_parsed.dt.hour * 3600) + (time_parsed.dt.minute * 60) + time_parsed.dt.second |
|
except Exception as e: |
|
return f"Error processing date/time: {str(e)}" |
|
|
|
return log_data |
|
|
|
def detect_intrusion(file): |
|
"""Process log file and predict attack type.""" |
|
try: |
|
log_data = pd.read_csv(file.name) |
|
except Exception as e: |
|
return f"Error reading file: {str(e)}" |
|
|
|
log_data = convert_datetime_features(log_data) |
|
|
|
missing_features = [feature for feature in numeric_features if feature not in log_data.columns] |
|
if missing_features: |
|
return f"Missing features in file: {', '.join(missing_features)}" |
|
|
|
try: |
|
log_data['door_state'] = log_data['door_state'].astype(str).str.strip().replace({'closed': 0, 'open': 1}) |
|
log_data['sphone_signal'] = pd.to_numeric(log_data['sphone_signal'], errors='coerce') |
|
|
|
feature_values = log_data[numeric_features].astype(float).values |
|
predictions = rf_model.predict(feature_values) |
|
except Exception as e: |
|
return f"Error during prediction: {str(e)}" |
|
|
|
|
|
log_data['Prediction'] = [class_labels.get(pred, 'Unknown Attack') for pred in predictions] |
|
|
|
|
|
log_data['date'] = log_data['date'].dt.strftime('%Y-%m-%d') |
|
|
|
|
|
output_df = log_data[['date', 'time', 'Prediction']] |
|
|
|
|
|
output_file = "intrusion_results.csv" |
|
output_df.to_csv(output_file, index=False) |
|
|
|
return output_df, output_file |
|
|
|
|
|
iface = gr.Interface( |
|
fn=detect_intrusion, |
|
inputs=[gr.File(label="Upload Log File (CSV format)")], |
|
outputs=[gr.Dataframe(label="Intrusion Detection Results"), gr.File(label="Download Predictions CSV")], |
|
title="Intrusion Detection System", |
|
description=( |
|
""" |
|
Upload a CSV log file with the following features: |
|
date,time,door_state,sphone_signal,label |
|
Example: |
|
26-04-19,13:59:20,1,-85,normal |
|
""" |
|
) |
|
) |
|
|
|
iface.launch() |