Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
|
6 |
+
from sklearn.ensemble import RandomForestClassifier, BaggingClassifier, AdaBoostClassifier
|
7 |
+
from sklearn.tree import DecisionTreeClassifier
|
8 |
+
|
9 |
+
|
10 |
+
# Load the saved models
|
11 |
+
rf_model = joblib.load('rf_model.pkl')
|
12 |
+
dt_model = joblib.load('decision_tree_model.pkl')
|
13 |
+
bagging_model = joblib.load('model_bagging.pkl')
|
14 |
+
ada_model = joblib.load('model_adaboost.pkl')
|
15 |
+
|
16 |
+
class_labels = {
|
17 |
+
0: "normal",
|
18 |
+
1: "backdoor",
|
19 |
+
2: "ddos",
|
20 |
+
3: "dos",
|
21 |
+
4: "injection",
|
22 |
+
5: "password",
|
23 |
+
6: "ransomware",
|
24 |
+
7: "scanning",
|
25 |
+
8: "xss",
|
26 |
+
9: "mitm"
|
27 |
+
}
|
28 |
+
|
29 |
+
def detect_intrusion(features, model_choice="Random Forest"):
|
30 |
+
# Convert the input string (comma-separated values) into a list of floats
|
31 |
+
features = [list(map(float, features.split(",")))]
|
32 |
+
|
33 |
+
# Choose the model based on user selection
|
34 |
+
if model_choice == "Random Forest":
|
35 |
+
model = rf_model
|
36 |
+
elif model_choice == "Decision Tree":
|
37 |
+
model = decision_tree_model
|
38 |
+
elif model_choice == "Bagging Classifier":
|
39 |
+
model = model_bagging
|
40 |
+
elif model_choice == "AdaBoost Classifier":
|
41 |
+
model = model_adaboost
|
42 |
+
else:
|
43 |
+
return "Invalid model choice!"
|
44 |
+
|
45 |
+
# Predict the class (multi-class classification)
|
46 |
+
prediction = model.predict(features)
|
47 |
+
predicted_class = prediction[0] # Get the predicted class (an integer between 0-8)
|
48 |
+
|
49 |
+
# Return the human-readable class description
|
50 |
+
if predicted_class == 0:
|
51 |
+
return "No Intrusion Detected"
|
52 |
+
else:
|
53 |
+
return f"Intrusion Detected: {class_labels.get(predicted_class, 'Unknown Attack')}"
|
54 |
+
|
55 |
+
# Create a Gradio interface
|
56 |
+
iface = gr.Interface(fn=detect_intrusion,
|
57 |
+
inputs=[gr.Textbox(label="Input Features (comma-separated)"),
|
58 |
+
gr.Dropdown(choices=["Random Forest", "Decision Tree", "Bagging Classifier", "AdaBoost Classifier"], label="Select Model")],
|
59 |
+
outputs="text",
|
60 |
+
title="Intrusion Detection System",
|
61 |
+
description="Enter features in the format: feature1, feature2, feature3...")
|
62 |
+
|
63 |
+
# Launch the interface locally for testing
|
64 |
+
iface.launch()
|