SilverDragon9 commited on
Commit
d65277f
·
verified ·
1 Parent(s): 898548b

Rename app.py to Sniffer_AI(GPS Tracker Dataset).py

Browse files
Files changed (2) hide show
  1. Sniffer_AI(GPS Tracker Dataset).py +97 -0
  2. app.py +0 -64
Sniffer_AI(GPS Tracker Dataset).py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import joblib
4
+ import gradio as gr
5
+ import os
6
+ import tempfile
7
+
8
+ # Set a custom directory for Gradio's temporary files
9
+ os.environ["GRADIO_TEMP"] = tempfile.mkdtemp()
10
+
11
+ # Load the saved Random Forest model
12
+ rf_model = joblib.load('rf_model.pkl') # Ensure the correct model path
13
+
14
+ # Define required numeric features
15
+ numeric_features = [
16
+ "date_numeric", "time_numeric", "door_state", "sphone_signal", "label"
17
+ ]
18
+
19
+ # Class labels for attack types
20
+ class_labels = {
21
+ 0: "Normal",
22
+ 1: "Backdoor",
23
+ 2: "DDoS",
24
+ 3: "Injection",
25
+ 4: "Password Attack",
26
+ 5: "Ransomware",
27
+ 6: "Scanning",
28
+ 7: "XSS",
29
+ }
30
+
31
+ def convert_datetime_features(log_data):
32
+ """Convert date and time into numeric values."""
33
+ try:
34
+ log_data['date'] = pd.to_datetime(log_data['date'], format='%d-%m-%y', errors='coerce')
35
+ log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9
36
+
37
+ time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce')
38
+ log_data['time_numeric'] = (time_parsed.dt.hour * 3600) + (time_parsed.dt.minute * 60) + time_parsed.dt.second
39
+ except Exception as e:
40
+ return f"Error processing date/time: {str(e)}"
41
+
42
+ return log_data
43
+
44
+ def detect_intrusion(file):
45
+ """Process log file and predict attack type."""
46
+ try:
47
+ log_data = pd.read_csv(file.name)
48
+ except Exception as e:
49
+ return f"Error reading file: {str(e)}"
50
+
51
+ log_data = convert_datetime_features(log_data)
52
+
53
+ missing_features = [feature for feature in numeric_features if feature not in log_data.columns]
54
+ if missing_features:
55
+ return f"Missing features in file: {', '.join(missing_features)}"
56
+
57
+ try:
58
+ log_data['door_state'] = log_data['door_state'].astype(str).str.strip().replace({'closed': 0, 'open': 1})
59
+ log_data['sphone_signal'] = pd.to_numeric(log_data['sphone_signal'], errors='coerce')
60
+
61
+ feature_values = log_data[numeric_features].astype(float).values
62
+ predictions = rf_model.predict(feature_values)
63
+ except Exception as e:
64
+ return f"Error during prediction: {str(e)}"
65
+
66
+ # Map predictions to specific attack types
67
+ log_data['Prediction'] = [class_labels.get(pred, 'Unknown Attack') for pred in predictions]
68
+
69
+ # Format date for output
70
+ log_data['date'] = log_data['date'].dt.strftime('%Y-%m-%d')
71
+
72
+ # Select final output columns
73
+ output_df = log_data[['date', 'time', 'Prediction']]
74
+
75
+ # Save the output to a CSV file for download
76
+ output_file = "intrusion_results.csv"
77
+ output_df.to_csv(output_file, index=False)
78
+
79
+ return output_df, output_file
80
+
81
+ # Create Gradio interface
82
+ iface = gr.Interface(
83
+ fn=detect_intrusion,
84
+ inputs=[gr.File(label="Upload Log File (CSV format)")],
85
+ outputs=[gr.Dataframe(label="Intrusion Detection Results"), gr.File(label="Download Predictions CSV")],
86
+ title="Intrusion Detection System",
87
+ description=(
88
+ """
89
+ Upload a CSV log file with the following features:
90
+ date,time,door_state,sphone_signal,label
91
+ Example:
92
+ 26-04-19,13:59:20,1,-85,normal
93
+ """
94
+ )
95
+ )
96
+
97
+ iface.launch()
app.py DELETED
@@ -1,64 +0,0 @@
1
- import gradio as gr
2
- import joblib
3
- import requests
4
- import os
5
-
6
- from sklearn.ensemble import RandomForestClassifier, BaggingClassifier, AdaBoostClassifier
7
- from sklearn.tree import DecisionTreeClassifier
8
-
9
-
10
- # Load the saved models
11
- rf_model = joblib.load('rf_model.pkl')
12
- dt_model = joblib.load('decision_tree_model.pkl')
13
- bagging_model = joblib.load('model_bagging.pkl')
14
- ada_model = joblib.load('model_adaboost.pkl')
15
-
16
- class_labels = {
17
- 0: "normal",
18
- 1: "backdoor",
19
- 2: "ddos",
20
- 3: "dos",
21
- 4: "injection",
22
- 5: "password",
23
- 6: "ransomware",
24
- 7: "scanning",
25
- 8: "xss",
26
- 9: "mitm"
27
- }
28
-
29
- def detect_intrusion(features, model_choice="Random Forest"):
30
- # Convert the input string (comma-separated values) into a list of floats
31
- features = [list(map(float, features.split(",")))]
32
-
33
- # Choose the model based on user selection
34
- if model_choice == "Random Forest":
35
- model = rf_model
36
- elif model_choice == "Decision Tree":
37
- model = decision_tree_model
38
- elif model_choice == "Bagging Classifier":
39
- model = model_bagging
40
- elif model_choice == "AdaBoost Classifier":
41
- model = model_adaboost
42
- else:
43
- return "Invalid model choice!"
44
-
45
- # Predict the class (multi-class classification)
46
- prediction = model.predict(features)
47
- predicted_class = prediction[0] # Get the predicted class (an integer between 0-8)
48
-
49
- # Return the human-readable class description
50
- if predicted_class == 0:
51
- return "No Intrusion Detected"
52
- else:
53
- return f"Intrusion Detected: {class_labels.get(predicted_class, 'Unknown Attack')}"
54
-
55
- # Create a Gradio interface
56
- iface = gr.Interface(fn=detect_intrusion,
57
- inputs=[gr.Textbox(label="Input Features (comma-separated)"),
58
- gr.Dropdown(choices=["Random Forest", "Decision Tree", "Bagging Classifier", "AdaBoost Classifier"], label="Select Model")],
59
- outputs="text",
60
- title="Intrusion Detection System",
61
- description="Enter features in the format: feature1, feature2, feature3...")
62
-
63
- # Launch the interface locally for testing
64
- iface.launch()