Llama3-8B-lora-r-32-generic-step-1200-lr-1e-5-labels_40.0-1
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.9038
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 1200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.0258 | 1.0870 | 50 | 4.1291 |
3.728 | 2.1739 | 100 | 3.4327 |
3.2554 | 3.2609 | 150 | 3.1749 |
3.0389 | 4.3478 | 200 | 3.0403 |
2.8709 | 5.4348 | 250 | 2.9543 |
2.7513 | 6.5217 | 300 | 2.8973 |
2.6369 | 7.6087 | 350 | 2.8526 |
2.5456 | 8.6957 | 400 | 2.8278 |
2.4591 | 9.7826 | 450 | 2.8082 |
2.3865 | 10.8696 | 500 | 2.8015 |
2.3214 | 11.9565 | 550 | 2.8006 |
2.2617 | 13.0435 | 600 | 2.8072 |
2.203 | 14.1304 | 650 | 2.8272 |
2.1612 | 15.2174 | 700 | 2.8441 |
2.1271 | 16.3043 | 750 | 2.8511 |
2.075 | 17.3913 | 800 | 2.8676 |
2.0602 | 18.4783 | 850 | 2.8769 |
2.0296 | 19.5652 | 900 | 2.8869 |
2.0106 | 20.6522 | 950 | 2.8915 |
2.0026 | 21.7391 | 1000 | 2.8979 |
1.9941 | 22.8261 | 1050 | 2.9038 |
Framework versions
- PEFT 0.15.2
- Transformers 4.45.2
- Pytorch 2.5.0+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Siqi-Hu/Llama3-8B-lora-r-32-generic-step-1200-lr-1e-5-labels_40.0-1
Base model
meta-llama/Meta-Llama-3-8B