SentenceTransformer based on cl-nagoya/ruri-large-v2
This is a sentence-transformers model finetuned from cl-nagoya/ruri-large-v2 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cl-nagoya/ruri-large-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Smrfhdl/ruri-large-v2-triplet-fine-tuned-v5")
# Run inference
sentences = [
'払込票の期限が11月末で切れており支払いができない状態',
'11月払込票の有効期限が過ぎ、新しい払込票が必要な状況',
'11月満期保険金の受取期限が過ぎ、新規請求手続きが必要な状態',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
train-eval
,dev-eval
andtest-eval
- Evaluated with
TripletEvaluator
Metric | train-eval | dev-eval | test-eval |
---|---|---|---|
cosine_accuracy | 1.0 | 0.97 | 0.98 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 800 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 800 samples:
anchor positive negative type string string string details - min: 8 tokens
- mean: 21.52 tokens
- max: 40 tokens
- min: 8 tokens
- mean: 24.07 tokens
- max: 43 tokens
- min: 6 tokens
- mean: 20.14 tokens
- max: 38 tokens
- Samples:
anchor positive negative 赤坂桃子さんの手術給付金請求条件を教えて
1991年7月生まれの契約者のパーキンソン病手術保障
佐野千恵様の死亡保険給付遅延の理由を説明
給付金請求書を11月19日に発送したのですが、到着は確認されていますか?
先月19日に投函した請求書類、既に事務所には届きましたか
保険料のコンビニ支払い用紙はいつ頃届く予定ですか?
妻が肝炎で入院し保険金を請求したいが必要書類が不明
主人が膵炎で手術入院した際の給付申請で診断書不足に困った
妻が肝炎で入院したため健康保険の資格喪失手続きをしたい
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.2 }
Evaluation Dataset
json
- Dataset: json
- Size: 100 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 100 samples:
anchor positive negative type string string string details - min: 10 tokens
- mean: 21.4 tokens
- max: 41 tokens
- min: 12 tokens
- mean: 23.57 tokens
- max: 40 tokens
- min: 9 tokens
- mean: 19.11 tokens
- max: 32 tokens
- Samples:
anchor positive negative 11月19日に送った書類の到着は確認済みですか?
先月下旬に郵送した請求書類の受領状況を確かめるには?
保険証券の紛失届を出したいのですが手続きを教えてください
歯根たん切除手術の保険適用について確認したい
歯科治療の支払いが保険の対象かどうかを教えてほしい
生命保険の契約内容を変更したいのですが
クレジットカード番号変更による保険料支払い継続手続き
新しいクレジットカードへ切替えて保険料引き落とし継続する手順
銀行口座変更による給与天引きの停止申請方法
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.2 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 30warmup_ratio
: 0.05fp16
: Truedataloader_num_workers
: 4load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 30max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | train-eval_cosine_accuracy | dev-eval_cosine_accuracy | test-eval_cosine_accuracy |
---|---|---|---|---|---|---|
0.3077 | 4 | 0.1013 | 0.0764 | 0.9525 | 0.9300 | - |
0.6154 | 8 | 0.075 | 0.0372 | 0.9625 | 0.9300 | - |
0.9231 | 12 | 0.0345 | 0.0225 | 0.9700 | 0.9500 | - |
1.2308 | 16 | 0.0206 | 0.0185 | 0.9675 | 0.9700 | - |
1.5385 | 20 | 0.0199 | 0.0157 | 0.9837 | 0.9700 | - |
1.8462 | 24 | 0.0201 | 0.0176 | 0.9937 | 0.9800 | - |
2.1538 | 28 | 0.0125 | 0.0163 | 1.0 | 0.9600 | - |
2.4615 | 32 | 0.0053 | 0.0118 | 1.0 | 0.9700 | - |
-1 | -1 | - | - | - | - | 0.9800 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 52
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Smrfhdl/ruri-large-v2-triplet-fine-tuned-v5
Base model
tohoku-nlp/bert-large-japanese-v2
Finetuned
cl-nagoya/ruri-pt-large-v2
Finetuned
cl-nagoya/ruri-large-v2
Evaluation results
- Cosine Accuracy on train evalself-reported1.000
- Cosine Accuracy on dev evalself-reported0.970
- Cosine Accuracy on test evalself-reported0.980