You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

SentenceTransformer based on cl-nagoya/ruri-large-v2

This is a sentence-transformers model finetuned from cl-nagoya/ruri-large-v2 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cl-nagoya/ruri-large-v2
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Smrfhdl/ruri-large-v2-triplet-fine-tuned-v5")
# Run inference
sentences = [
    '払込票の期限が11月末で切れており支払いができない状態',
    '11月払込票の有効期限が過ぎ、新しい払込票が必要な状況',
    '11月満期保険金の受取期限が過ぎ、新規請求手続きが必要な状態',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric train-eval dev-eval test-eval
cosine_accuracy 1.0 0.97 0.98

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 800 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 800 samples:
    anchor positive negative
    type string string string
    details
    • min: 8 tokens
    • mean: 21.52 tokens
    • max: 40 tokens
    • min: 8 tokens
    • mean: 24.07 tokens
    • max: 43 tokens
    • min: 6 tokens
    • mean: 20.14 tokens
    • max: 38 tokens
  • Samples:
    anchor positive negative
    赤坂桃子さんの手術給付金請求条件を教えて 1991年7月生まれの契約者のパーキンソン病手術保障 佐野千恵様の死亡保険給付遅延の理由を説明
    給付金請求書を11月19日に発送したのですが、到着は確認されていますか? 先月19日に投函した請求書類、既に事務所には届きましたか 保険料のコンビニ支払い用紙はいつ頃届く予定ですか?
    妻が肝炎で入院し保険金を請求したいが必要書類が不明 主人が膵炎で手術入院した際の給付申請で診断書不足に困った 妻が肝炎で入院したため健康保険の資格喪失手続きをしたい
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 0.2
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Size: 100 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 100 samples:
    anchor positive negative
    type string string string
    details
    • min: 10 tokens
    • mean: 21.4 tokens
    • max: 41 tokens
    • min: 12 tokens
    • mean: 23.57 tokens
    • max: 40 tokens
    • min: 9 tokens
    • mean: 19.11 tokens
    • max: 32 tokens
  • Samples:
    anchor positive negative
    11月19日に送った書類の到着は確認済みですか? 先月下旬に郵送した請求書類の受領状況を確かめるには? 保険証券の紛失届を出したいのですが手続きを教えてください
    歯根たん切除手術の保険適用について確認したい 歯科治療の支払いが保険の対象かどうかを教えてほしい 生命保険の契約内容を変更したいのですが
    クレジットカード番号変更による保険料支払い継続手続き 新しいクレジットカードへ切替えて保険料引き落とし継続する手順 銀行口座変更による給与天引きの停止申請方法
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 0.2
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 30
  • warmup_ratio: 0.05
  • fp16: True
  • dataloader_num_workers: 4
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 30
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss train-eval_cosine_accuracy dev-eval_cosine_accuracy test-eval_cosine_accuracy
0.3077 4 0.1013 0.0764 0.9525 0.9300 -
0.6154 8 0.075 0.0372 0.9625 0.9300 -
0.9231 12 0.0345 0.0225 0.9700 0.9500 -
1.2308 16 0.0206 0.0185 0.9675 0.9700 -
1.5385 20 0.0199 0.0157 0.9837 0.9700 -
1.8462 24 0.0201 0.0176 0.9937 0.9800 -
2.1538 28 0.0125 0.0163 1.0 0.9600 -
2.4615 32 0.0053 0.0118 1.0 0.9700 -
-1 -1 - - - - 0.9800

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
52
Safetensors
Model size
337M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Smrfhdl/ruri-large-v2-triplet-fine-tuned-v5

Finetuned
(1)
this model

Evaluation results