metadata
license: apache-2.0
base_model: openai/gpt-oss-20b
tags:
- merge-conflicts
- git-automation
- developer-tools
- code-generation
- version-control
- devops
languages:
- en
pipeline_tag: text-generation
library_name: transformers
datasets:
- SoarAILabs/merge-conflict-dataset
metrics:
- name: exact_match
type: exact_match
value: 20
- name: bleu
type: bleu
value: 54.83
- name: rouge-l
type: rouge
value: 67.1
model-index:
- name: KiteResolve-20B
results:
- task:
type: text-generation
name: Merge Conflict Resolution
metrics:
- type: exact_match
value: 20
name: Exact Match
- type: bleu
value: 54.83
name: BLEU
- type: rouge-l
value: 67.1
name: ROUGE-L
🪁 KiteResolve-20B: AI-Powered Merge Conflict Resolution
Developed by Soar AI Labs
🚀 Model Description
KiteResolve-20B is a fine-tuned version of GPT-OSS-20B specifically engineered for automated Git merge conflict resolution. This model transforms the tedious process of manually resolving merge conflicts into an intelligent, automated workflow that understands code semantics across multiple programming languages.
✨ Key Features
- 🎯 20% Exact Match Accuracy on real-world merge conflicts
- 📈 43.6% BLEU Score Improvement over base model
- 🌐 Multi-Language Support: Java, JavaScript, Python, C#, TypeScript, and more
- ⚡ Fast Inference: Optimized for CLI and webhook integrations
- 🔧 Production Ready: Designed for enterprise Git workflows
📊 Performance Metrics
Metric | Score | Improvement |
---|---|---|
Exact Match | 20.0 | – |
BLEU Score | 54.83 | ↗️ +43.6% |
ROUGE-L | 67.10 | ↗️ +33.7% |
Evaluated on 20 held-out samples from real-world merge conflicts.
🛠️ Usage
Quick Start
from transformers import AutoModelForCausalLM, AutoTokenizer
from unsloth.chat_templates import get_chat_template
# Load the model
model = AutoModelForCausalLM.from_pretrained("SoarAILabs/KiteResolve-20B")
tokenizer = AutoTokenizer.from_pretrained("SoarAILabs/KiteResolve-20B")
tokenizer = get_chat_template(tokenizer, chat_template="gpt-oss")
# Resolve a merge conflict
conflict = """
<<<<<<< ours
function calculateTotal(items) {
return items.reduce((sum, item) => sum + item.price, 0);
}
=======
function calculateTotal(items) {
return items.map(item => item.price).reduce((a, b) => a + b, 0);
}
>>>>>>> theirs
"""
messages = [{"role": "user", "content": f"Resolve this merge conflict:\n```{conflict}```"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([prompt], return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=False)
resolution = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(resolution)
Ollama 🦙️
ollama run hf.co/SoarAILabs/KiteResolve-20B/model-q4_k_m.gguf