efficientvit_b1.r224_in1k_rice-leaf-disease-augmented-v4_v5_fft

This model is a fine-tuned version of timm/efficientvit_b1.r224_in1k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2422
  • Accuracy: 0.9262

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 256
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1301 0.5 64 2.0282 0.1711
2.0177 1.0 128 1.8643 0.3121
1.7993 1.5 192 1.6252 0.4765
1.5315 2.0 256 1.3194 0.5940
1.1986 2.5 320 1.0574 0.6611
0.9772 3.0 384 0.8973 0.7349
0.7861 3.5 448 0.7841 0.7685
0.6808 4.0 512 0.6916 0.7886
0.5661 4.5 576 0.6288 0.8289
0.5042 5.0 640 0.5646 0.8456
0.4319 5.5 704 0.5420 0.8423
0.4057 6.0 768 0.5023 0.8591
0.3552 6.5 832 0.4788 0.8490
0.3201 7.0 896 0.4474 0.8591
0.3034 7.5 960 0.4353 0.8591
0.2745 8.0 1024 0.4315 0.8658
0.2588 8.5 1088 0.4181 0.8624
0.2601 9.0 1152 0.4154 0.8591
0.2374 9.5 1216 0.4123 0.8591
0.2464 10.0 1280 0.4054 0.8725
0.237 10.5 1344 0.4071 0.8591
0.2334 11.0 1408 0.3991 0.8658
0.236 11.5 1472 0.3978 0.8792
0.2267 12.0 1536 0.3735 0.8826
0.1949 12.5 1600 0.3543 0.8758
0.1715 13.0 1664 0.3416 0.8859
0.1381 13.5 1728 0.3150 0.8926
0.1274 14.0 1792 0.2979 0.8926
0.1026 14.5 1856 0.3080 0.8960
0.0888 15.0 1920 0.2842 0.8993
0.0722 15.5 1984 0.2812 0.9027
0.0723 16.0 2048 0.2804 0.8960
0.0615 16.5 2112 0.2734 0.9094
0.053 17.0 2176 0.2662 0.8993
0.0481 17.5 2240 0.2615 0.9060
0.0472 18.0 2304 0.2646 0.9027
0.0425 18.5 2368 0.2603 0.9060
0.041 19.0 2432 0.2545 0.9060
0.0379 19.5 2496 0.2536 0.9027
0.0427 20.0 2560 0.2567 0.9060
0.0403 20.5 2624 0.2510 0.9094
0.0374 21.0 2688 0.2571 0.9027
0.039 21.5 2752 0.2548 0.9027
0.0332 22.0 2816 0.2584 0.9027
0.0236 22.5 2880 0.2474 0.9161
0.0225 23.0 2944 0.2417 0.9161
0.016 23.5 3008 0.2442 0.9128
0.0135 24.0 3072 0.2411 0.9128
0.0112 24.5 3136 0.2378 0.9060
0.01 25.0 3200 0.2369 0.9161
0.008 25.5 3264 0.2391 0.9161
0.0069 26.0 3328 0.2333 0.9228
0.0062 26.5 3392 0.2339 0.9195
0.0065 27.0 3456 0.2366 0.9094
0.0056 27.5 3520 0.2390 0.9195
0.0057 28.0 3584 0.2387 0.9161
0.005 28.5 3648 0.2417 0.9128
0.005 29.0 3712 0.2420 0.9128
0.0056 29.5 3776 0.2457 0.9161
0.005 30.0 3840 0.2392 0.9195
0.0052 30.5 3904 0.2323 0.9161
0.0048 31.0 3968 0.2432 0.9195
0.0042 31.5 4032 0.2426 0.9161
0.0037 32.0 4096 0.2395 0.9195
0.0028 32.5 4160 0.2380 0.9228
0.0028 33.0 4224 0.2485 0.9195
0.0025 33.5 4288 0.2410 0.9262
0.0021 34.0 4352 0.2392 0.9228
0.0017 34.5 4416 0.2463 0.9228
0.0017 35.0 4480 0.2443 0.9161
0.0016 35.5 4544 0.2463 0.9262
0.0016 36.0 4608 0.2478 0.9161
0.0015 36.5 4672 0.2484 0.9195
0.0013 37.0 4736 0.2486 0.9228
0.0013 37.5 4800 0.2449 0.9161
0.0014 38.0 4864 0.2479 0.9228
0.0013 38.5 4928 0.2553 0.9161
0.0012 39.0 4992 0.2456 0.9228
0.0013 39.5 5056 0.2507 0.9161
0.0013 40.0 5120 0.2422 0.9262

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.1
Downloads last month
121
Safetensors
Model size
7.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for SodaXII/efficientvit_b1.r224_in1k_rice-leaf-disease-augmented-v4_v5_fft

Finetuned
(1)
this model